首页> 外文期刊>Advanced engineering informatics >Intelligent compilation of patent summaries using machine learning and natural language processing techniques
【24h】

Intelligent compilation of patent summaries using machine learning and natural language processing techniques

机译:使用机器学习和自然语言处理技术对专利摘要进行智能编辑

获取原文
获取原文并翻译 | 示例

摘要

Patents are a type of intellectual property with ownership and monopolistic rights that are publicly accessible published documents, often with illustrations, registered by governments and international organizations. The registration allows people familiar with the domain to understand how to re-create the new and useful invention but restricts the manufacturing unless the owner licenses or enters into a legal agreement to sell ownership of the patent. Patents reward the costly research and development efforts of inventors while spreading new knowledge and accelerating innovation. This research uses artificial intelligence natural language processing, deep learning techniques and machine learning algorithms to extract the essential knowledge of patent documents within a given domain as a means to evaluate their worth and technical advantage. Manual patent abstraction is a time consuming, labor intensive, and subjective process which becomes cost and outcome ineffective as the size of the patent knowledge domain increases. This research develops an intelligent patent summarization methodology using artificial intelligence machine learning approaches to allow patent domains of extremely large sizes to be effectively and objectively summarized, especially for cases where the cost and time requirements of manual summarization is infeasible. The system learns to automatically summarize patent documents with natural language texts for any given technical domain. The machine learning solution identifies technical key terminologies (words, phrases, and sentences) in the context of the semantic relationships among training patents and corresponding summaries as the core of the summarization system. To ensure the high performance of the proposed methodology, ROUGE metrics are used to evaluate precision, recall, accuracy, and consistency of knowledge generated by the summarization system. The Smart machinery technologies domain, under the sub-domains of control intelligence, sensor intelligence and intelligent decision-making provide the case studies for the patent summarization system training. The cases use 1708 training pairs of patents and summaries while testing uses 30 randomly selected patents. The case implementation and verification have shown the summary reports achieve 90% and 84% average precision and recall ratios respectively.
机译:专利是一种具有所有权和垄断权的知识产权,可以公开获取的公开文件(通常带有插图)由政府和国际组织注册。通过注册,熟悉该领域的人们可以了解如何重新创建新的有用的发明,但会限制制造,除非所有者许可或达成出售专利所有权的法律协议。专利奖励发明者付出的昂贵的研究和开发工作,同时传播新知识并加速创新。这项研究使用人工智能自然语言处理,深度学习技术和机器学习算法来提取给定领域内专利文献的基本知识,以此来评估其价值和技术优势。手动进行专利抽象是一个耗时,费力且主观的过程,随着专利知识领域的规模增加,成本和结果变得无效。这项研究开发了一种使用人工智能机器学习方法的智能专利摘要方法,可以有效,客观地总结非常大的专利领域,尤其是在人工摘要的成本和时间要求不可行的情况下。该系统学习自动为任何给定技术领域的自然语言文本总结专利文件。机器学习解决方案根据培训专利和相应摘要之间的语义关系,将技术关键术语(单词,短语和句子)标识为摘要系统的核心。为了确保所提出方法的高性能,ROUGE度量标准用于评估汇总系统生成的知识的准确性,查全率,准确性和一致性。在控制智能,传感器智能和智能决策子领域中,智能机械技术领域为专利摘要系统培训提供了案例研究。这些案例使用了1708个专利和摘要培训对,而测试使用了30个随机选择的专利。案例的执行和验证表明,摘要报告分别达到90%和84%的平均准确率和召回率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号