首页> 外文期刊>Advanced engineering informatics >A smart surface inspection system using faster R-CNN in cloud-edge computing environment
【24h】

A smart surface inspection system using faster R-CNN in cloud-edge computing environment

机译:云边缘计算环境中使用更快的R-CNN的智能表面检测系统

获取原文
获取原文并翻译 | 示例

摘要

Automated surface inspection has become a hot topic with the rapid development of machine vision technologies. Traditional machine vision methods need experts to carefully craft image features for defect detection. This limits their applications to wider areas. The emerging convolutional neural networks (CNN) can automatically extract features and yield good results in many cases. However, the CNN-based image classification methods are more suitable for flat surface texture inspection. It is difficult to accurately locate small defects in geometrically complex products. Furthermore, the computational power required in CNN algorithms is usually high and it is not efficient to be implemented on embedded hardware. To solve these problems, a smart surface inspection system is proposed using faster R-CNN algorithm in the cloud-edge computing environment. The faster R-CNN as a CNN-based object detection method can efficiently identify defects in complex product images and the cloud-edge computing framework can provide fast computation speed and evolving algorithm models. A real industrial case study is presented to illustrate the effectiveness of the proposed method. The results show that the proposed method can provide high detection accuracy within a short time.
机译:随着机器视觉技术的飞速发展,自动表面检测已成为热门话题。传统的机器视觉方法需要专家精心制作图像特征以进行缺陷检测。这将它们的应用限制在更广阔的领域。在许多情况下,新兴的卷积神经网络(CNN)可以自动提取特征并产生良好的结果。但是,基于CNN的图像分类方法更适合于平面纹理检查。在几何形状复杂的产品中很难准确定位小缺陷。此外,CNN算法所需的计算能力通常很高,并且在嵌入式硬件上实现效率不高。为了解决这些问题,提出了一种在云计算环境中使用更快的R-CNN算法的智能表面检测系统。更快的R-CNN作为基于CNN的对象检测方法可以有效地识别复杂产品图像中的缺陷,而云边缘计算框架可以提供快速的计算速度和不断发展的算法模型。进行了实际的工业案例研究,以说明该方法的有效性。结果表明,该方法可以在短时间内提供较高的检测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号