首页> 外文期刊>Advanced engineering informatics >Automated ergonomic risk monitoring using body-mounted sensors and machine learning
【24h】

Automated ergonomic risk monitoring using body-mounted sensors and machine learning

机译:使用人体感应器和机器学习自动进行人体工程学风险监控

获取原文
获取原文并翻译 | 示例

摘要

Workers in various industries are often subject to challenging physical motions that may lead to work-related musculoskeletal disorders (WMSDs). To prevent WMSDs, health and safety organizations have established rules and guidelines that regulate duration and frequency of labor-intensive activities. In this paper, a methodology is introduced to unobtrusively evaluate the ergonomic risk levels caused by overexertion. This is achieved by collecting time-stamped motion data from body-mounted smartphones (i.e., accelerometer, linear accelerometer, and gyroscope signals), automatically detecting workers’ activities through a classification framework, and estimating activity duration and frequency information. This study also investigates various data acquisition and processing settings (e.g., smartphone’s position, calibration, window size, and feature types) through a leave-one-subject-out cross-validation framework. Results indicate that signals collected from arm-mounted smartphone device, when calibrated, can yield accuracy up to 90.2% in the considered 3-class classification task. Further post-processing the output of activity classification yields very accurate estimation of the corresponding ergonomic risk levels. This work contributes to the body of knowledge by expanding the current state in workplace health assessment by designing and testing ubiquitous wearable technology to improve the timeliness and quality of ergonomic-related data collection and analysis.
机译:各行各业的工人经常遭受具有挑战性的身体运动,这可能导致与工作有关的肌肉骨骼疾病(WMSD)。为了预防WMSD,健康与安全组织已经建立了规范劳动密集型活动的持续时间和频率的规则和准则。在本文中,介绍了一种方法,可以毫不干扰地评估因过度劳累引起的人体工程学风险水平。这是通过从车载智能手机收集带有时间戳的运动数据(即加速度计,线性加速度计和陀螺仪信号),通过分类框架自动检测工人的活动并估算活动持续时间和频率信息来实现的。这项研究还通过留一法制交叉验证框架研究了各种数据采集和处理设置(例如,智能手机的位置,校准,窗口大小和功能类型)。结果表明,从经过校准的手臂式智能手机设备收集的信号在考虑的3类分类任务中可以产生高达90.2%的精度。进一步对活动分类的输出进行后处理,可以对相应的人体工程学风险水平进行非常准确的估算。这项工作通过设计和测试无处不在的可穿戴技术来提高工作场所健康评估的当前状态,从而提高知识体系,从而提高与人体工程学相关的数据收集和分析的及时性和质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号