首页> 外文期刊>Advanced energy materials >Millisecond Conversion of Photovoltaic Silicon Waste to Binder-Free High Silicon Content Nanowires Electrodes
【24h】

Millisecond Conversion of Photovoltaic Silicon Waste to Binder-Free High Silicon Content Nanowires Electrodes

机译:将光伏硅废料的毫秒转换为无粘合剂的高硅含量纳米线电极

获取原文
获取原文并翻译 | 示例
           

摘要

High-value recycling of photovoltaic silicon waste is an important path to achieve "carbon neutrality." However, the current remelting and refining technology of Si waste (WSi) is tedious with high secondary energy consumption and repollution, and it can only achieve its relegation recycling. Here, an efficient and high-value recycling strategy is proposed in which photovoltaic WSi is converted to high energy density and stable Si nanowires (SiNWs) electrodes for lithium-ion batteries (LIBs) in milliseconds. The flash heating and quenching (approximate to 2100 K, 10 ms) provided by an electrothermal shock drive directional diffusion of Si atoms to form SiNWs within the confined space between graphene oxide films. As a result, the SiNWs self-assemble to form a conductive SiNWs-reduced graphene oxide composite (SiNWs@RGO). When applied as a binder-free anode for LIBs the SiNWs@RGO electrode exhibits an ultrahigh initial Coulombic efficiency (89.5%) and robust cycle stability (2381.7 mAh g(-1) at 1 A g(-1) for more than 500 cycles) at high Si content of 76%. Moreover, full LIBs constructed using the commercial Li[Ni0.8Co0.16Al0.04]O-2 cathode exhibit impressive cycling performance. In addition, this clean high-value recycling method will promote economic, environmentally friendly, and sustainable development of renewable energy.
机译:光伏硅废料的高价值回收是实现“碳中立”的重要途径。然而,Si废物(WSI)的当前重熔和精炼技术具有繁琐的,具有高次级能耗和擦除措施,它只能实现其降级回收。这里,提出了一种高价值和高价值的回收策略,其中光伏WSI被转换为锂离子电池(Libs)的高能量密度和稳定的Si纳米线(SINWS)电极以毫秒。通过Si原子的电热冲击驱动方向扩散提供了闪蒸加热和淬火(近似为2100k,10ms),以在石墨烯氧化物膜之间的限制空间内形成Sinws。结果,SINWS自组装以形成导电SINWS-氧化的石墨烯氧化物复合物(SINWS @ Rgo)。当作为LIBS的无粘合剂阳极施加时,SINWS @ RGO电极具有超高初始库仑效率(89.5%)和鲁棒循环稳定性(2381.7mahg(-1),1Ag(-1)超过500个循环)高Si含量为76%。此外,使用商用Li [Ni0.8Co0.16A10.04] O-2阴极构建的全部客厅表现出令人印象深刻的循环性能。此外,这种清洁的高价值回收方法将促进可再生能源的经济,环保和可持续发展。

著录项

  • 来源
    《Advanced energy materials》 |2021年第40期|2102103.1-2102103.10|共10页
  • 作者单位

    Chinese Acad Sci Key Lab Green Proc & Engn Natl Engn Lab Hydrometallurg Cleaner Prod Technol Inst Proc Engn Innovat Acad Green Manufacture Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Chem Engn Beijing 100039 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Key Lab Adv Ceram & Machining Technol Minist Educ Tianjin Key Lab Composite & Funct Mat Tianjin 300072 Peoples R China;

    Chinese Acad Sci Key Lab Green Proc & Engn Natl Engn Lab Hydrometallurg Cleaner Prod Technol Inst Proc Engn Innovat Acad Green Manufacture Beijing 100190 Peoples R China;

    Chinese Acad Sci Key Lab Green Proc & Engn Natl Engn Lab Hydrometallurg Cleaner Prod Technol Inst Proc Engn Innovat Acad Green Manufacture Beijing 100190 Peoples R China;

    Chinese Acad Sci Key Lab Green Proc & Engn Natl Engn Lab Hydrometallurg Cleaner Prod Technol Inst Proc Engn Innovat Acad Green Manufacture Beijing 100190 Peoples R China;

    Chinese Acad Sci Key Lab Green Proc & Engn Natl Engn Lab Hydrometallurg Cleaner Prod Technol Inst Proc Engn Innovat Acad Green Manufacture Beijing 100190 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Key Lab Adv Ceram & Machining Technol Minist Educ Tianjin Key Lab Composite & Funct Mat Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Key Lab Adv Ceram & Machining Technol Minist Educ Tianjin Key Lab Composite & Funct Mat Tianjin 300072 Peoples R China;

    Chinese Acad Sci Key Lab Green Proc & Engn Natl Engn Lab Hydrometallurg Cleaner Prod Technol Inst Proc Engn Innovat Acad Green Manufacture Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Chem Engn Beijing 100039 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electrothermal shock; high silicon content; lithium-ion batteries; nanowires electrodes; photovoltaic silicon waste;

    机译:电热冲击;高硅含量;锂离子电池;纳米线电极;光伏硅浪费;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号