首页> 外文期刊>Ad-hoc & sensor wireless networks >A Model-Based Approach for Outlier Detection in Sensor Networks
【24h】

A Model-Based Approach for Outlier Detection in Sensor Networks

机译:传感器网络中基于模型的异常值检测方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a model-based approach to detect outliers in sensor networks by exploring the spatial correlation among neighboring nodes. This research is motivated by the observation that sensors in close proximity normally present similar readings. We propose to employ Gaussian mixture modeling as a statistical means to build a probability density function for multivariate spatial neighborhood sensor readings. Outlying sensors can be reliably detected since they exhibit extremely low density values. Our extensive simulation evaluation validates the proposed model-based approach for outlier detection in sensor networks.
机译:在本文中,我们提出了一种基于模型的方法,通过探索相邻节点之间的空间相关性来检测传感器网络中的异常值。这项研究的动机是观察到,距离很近的传感器通常显示相似的读数。我们建议采用高斯混合建模作为一种统计手段,以建立用于多元空间邻域传感器读数的概率密度函数。外围传感器的密度值极低,因此可以可靠地检测到它们。我们广泛的仿真评估验证了所提出的基于模型的方法在传感器网络中的异常检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号