首页> 外文期刊>Ad-hoc & sensor wireless networks >Ranking-based Feature Selection for Anomaly Detection in Sensor Networks
【24h】

Ranking-based Feature Selection for Anomaly Detection in Sensor Networks

机译:传感器网络异常检测的基于排名的特征选择

获取原文
获取原文并翻译 | 示例

摘要

Anomaly detection, for uncovering faults and failures, is a crucial task for wireless sensor networks (WSNs). There have been substantive research efforts in this field such as source-level troubleshooting, rule-based inference, and time sequence event analysis. Most existing approaches, however, rely on the collection of a large amount of information. Due to the lack of management on information features, the redundancy of collected information greatly degrades the efficiency of diagnosis in large-scale WSNs. To address this issue, we propose RFS (Ranking-based Feature Selection), a three-stage approach to efficiently select representative feature sets for diagnostic tasks and effectively characterize the network status. RFS is a compatible component that can be integrated with most state-of-the-art diagnostic approaches. We conduct extensive experiments based on a large-scale outdoor WSN system, GreenOrbs, to examine the performance of RFS. The results demonstrate that RFS achieves effective anomaly detection in a large-scale WSN with low overhead.
机译:对于无线传感器网络(WSN)而言,发现故障和失败的异常检测是一项至关重要的任务。在该领域已经进行了实质性的研究工作,例如源代码级故障排除,基于规则的推断以及时序事件分析。但是,大多数现有方法都依赖于收集大量信息。由于缺乏对信息特征的管理,所收集信息的冗余大大降低了大规模WSN的诊断效率。为了解决这个问题,我们提出了RFS(基于排名的特征选择),这是一种三阶段方法,可以有效地选择用于诊断任务的代表性特征集并有效表征网络状态。 RFS是兼容的组件,可以与大多数最新的诊断方法集成。我们基于大型室外WSN系统GreenOrbs进行了广泛的实验,以检验RFS的性能。结果表明,RFS在大规模WSN中以低开销实现了有效的异常检测。

著录项

  • 来源
    《Ad-hoc & sensor wireless networks》 |2013年第2期|119-139|共21页
  • 作者单位

    Department of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China;

    Department of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China;

    TNLIST, Tsinghua University, Beijing, China,Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China;

    TNLIST, Tsinghua University, Beijing, China,Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Anomaly detection; ranking-based feature selection; sensor network;

    机译:异常检测;基于排名的特征选择;传感器网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号