首页> 外文期刊>Ad hoc networks >Deep reinforcement learning mechanism for dynamic access control in wireless networks handling mMTC
【24h】

Deep reinforcement learning mechanism for dynamic access control in wireless networks handling mMTC

机译:用于处理mMTC的无线网络中动态访问控制的深度强化学习机制

获取原文
获取原文并翻译 | 示例

摘要

One important issue that needs to be addressed in order to provide effective massive deployments of IoT devices is access control. In 5G cellular networks, the Access Class Barring (ACB) method aims at increasing the total successful access probability by delaying randomly access requests. This mechanism can be controlled through the barring rate, which can be easily adapted in networks where Human-to-Human (H2H) communications are prevalent. However, in scenarios with massive deployments such as those found in IoT applications, it is not evident how this parameter should be set, and how it should adapt to dynamic traffic conditions. We propose a double deep reinforcement learning mechanism to adapt the barring rate of ACB under dynamic conditions. The algorithm is trained with simultaneous H2H and Machine-to-Machine (M2M) traffic, but we perform a separate performance evaluation for each type of traffic. The results show that our proposed mechanism is able to reach a successful access rate of 100 % for both H2H and M2M UEs and reduce the mean number of preamble transmissions while slightly affecting the mean access delay, even for scenarios with very high load. Also, its performance remains stable under the variation of different parameters. (C) 2019 Elsevier B.V. All rights reserved.
机译:为了提供有效的大规模物联网设备部署,需要解决的一个重要问题是访问控制。在5G蜂窝网络中,访问等级限制(ACB)方法旨在通过延迟随机访问请求来增加总成功访问概率。此机制可以通过限制速率来控制,该限制速率可以在普遍存在人对人(H2H)通信的网络中轻松调整。但是,在具有大规模部署的场景中(例如在IoT应用程序中发现的场景),不清楚如何设置此参数以及如何适应动态流量条件。我们提出了一种双重深度强化学习机制,以适应动态条件下ACB的禁止率。该算法使用H2H和机器对机器(M2M)的同步流量进行训练,但是我们对每种流量进行单独的性能评估。结果表明,我们提出的机制对于H2H和M2M UE都能够达到100%的成功接入率,并且即使在负载非常高的情况下,也可以减少前同步码传输的平均次数,同时对平均访问延迟稍有影响。而且,在不同参数的变化下其性能保持稳定。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号