首页> 外文期刊>Computer networks >Delay-aware dynamic access control for mMTC in wireless networks using deep reinforcement learning
【24h】

Delay-aware dynamic access control for mMTC in wireless networks using deep reinforcement learning

机译:使用深度增强学习,无线网络中MMTC的延迟感知动态访问控制

获取原文
获取原文并翻译 | 示例

摘要

The success of the applications based on the Internet of Things (IoT) relies heavily on the ability to process large amounts of data with different Quality-of-Service (QoS) requirements. Access control remains an important issue in scenarios where massive Machine-Type Communications (mMTC) prevail, and as a consequence, several mechanisms such as Access Class Barring (ACB) have been designed aiming at reducing congestion. Although this mechanism can effectively increase the total number of User Equipments (UEs) that can access the system, it can also harm the access delay, limiting its usability in some scenarios. In this work, we propose a delay-aware double deep reinforcement learning mechanism that can dynamically adapt two parameters of the system in order to enhance the probability of successful access using ACB, while at the same time reducing the expected delay by modifying the Random Access Opportunity (RAO) periodicity. Results show that our system can accept a simultaneously massive number of machine-type and human-type UEs while at the same time reducing the mean delay when compared to previously known solutions. This mechanism can work adequately under varying load conditions and can be trained with real data traces, which facilitates its implementation in real scenarios.
机译:基于事物互联网的应用程序的成功依赖于处理具有不同服务质量(QoS)要求的大量数据的能力。访问控制仍然是大量机床类型通信(MMTC)的情况下的一个重要问题,因此,若干机制(如Access Class Barring(ACB))旨在减少拥塞。虽然这种机制可以有效地增加可以访问系统的用户设备(UE)的总数,但它也会损害访问延迟,限制其在某些情况下的可用性。在这项工作中,我们提出了一种延迟感知的双层加强学习机制,可以动态地调整系统的两个参数,以便通过修改随机接入来增强成功访问的概率。同时通过修改随机访问来降低预期延迟机会(RAO)周期性。结果表明,我们的系统可以接受同时大量的机器型和人型UE,同时与先前已知的解决方案相比,同时降低平均延迟。该机制可以在不同的负载条件下充分工作,可以用真实数据迹线培训,这有利于实现其实际情况的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号