首页> 外文期刊>Acta Mathematica Hungarica >Hua’s theorem with nine almost equal prime variables
【24h】

Hua’s theorem with nine almost equal prime variables

机译:华定理具有9个几乎相等的素数变量

获取原文
获取原文并翻译 | 示例

摘要

We sharpen Hua’s result by proving that each sufficiently large odd integer N can be written as $$ N = p_1^3 + cdots + p_9^3 with left| {p_j - sqrt[3]{{N/9}}} right| leqq U = N^{tfrac{1} {3} - tfrac{1} {{198}} + varepsilon } $$ , where p j are primes. This result is as good as what was previously derived from the Generalized Riemann Hypothesis.
机译:通过证明每个足够大的奇数N可以写成$$ N = p_1 ^ 3 + cdots + p_9 ^ 3,而||来简化Hua的结果。 {p_j-sqrt [3] {{N / 9}}}右| leqq U = N ^ {tfrac {1} {3}-tfrac {1} {{198}} + varepsilon} $$,其中p j 是质数。该结果与先前从广义黎曼假设得出的结果一样好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号