首页> 外文期刊>ACM transactions on the web >ClickRank: Learning Session-Context Models to Enrich Web Search Ranking
【24h】

ClickRank: Learning Session-Context Models to Enrich Web Search Ranking

机译:ClickRank:学习会话上下文模型来丰富Web搜索排名

获取原文
获取原文并翻译 | 示例

摘要

User browsing information, particularly non-search-related activity, reveals important contextual information on the preferences and intents of Web users. In this article, we demonstrate the importance of mining general Web user behavior data to improve ranking and other Web-search experience, with an emphasis on analyzing individual user sessions for creating aggregate models. In this context, we introduce Click-Rank, an efficient, scalable algorithm for estimating Webpage and Website importance from general Web user-behavior data. We lay out the theoretical foundation of ClickRank based on an intentional surfer model and discuss its properties. We quantitatively evaluate its effectiveness regarding the problem of Web-search ranking, showing that it contributes significantly to retrieval performance as a novel Web-search feature. We demonstrate that the results produced by ClickRank for Web-search ranking are highly competitive with those produced by other approaches, yet achieved at better scalability and substantially lower computational costs. Finally, we discuss novel applications of ClickRank in providing enriched user Web-search experience, highlighting the usefulness of our approach for nonranking tasks.
机译:用户浏览信息,特别是与搜索无关的活动,揭示了有关Web用户偏好和意图的重要上下文信息。在本文中,我们演示了挖掘一般Web用户行为数据以提高排名和其他Web搜索体验的重要性,并着重于分析单个用户会话以创建汇总模型。在这种情况下,我们介绍了Click-Rank,这是一种有效的,可伸缩的算法,用于根据常规Web用户行为数据估算网页和网站的重要性。我们基于有意的冲浪者模型奠定了ClickRank的理论基础,并讨论了其性质。我们定量评估了其在Web搜索排名问题上的有效性,表明它作为一种新颖的Web搜索功能对检索性能做出了重要贡献。我们证明了ClickRank用于Web搜索排名的结果与其他方法所产生的结果极具竞争力,但以更好的可伸缩性和更低的计算成本实现了。最后,我们讨论了ClickRank在提供丰富的用户Web搜索体验方面的新颖应用,突出了我们的方法对非排名任务的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号