首页> 外文期刊>ACM transactions on the web >Active Learning for Web Search Ranking via Noise Injection
【24h】

Active Learning for Web Search Ranking via Noise Injection

机译:通过噪声注入主动学习网络搜索排名

获取原文
获取原文并翻译 | 示例

摘要

Learning to rank has become increasingly important for many information retrieval applications. To reduce the labeling cost at training data preparation, many active sampling algorithms have been proposed. In this article, we propose a novel active learning-for-ranking strategy called ranking-based sensitivity sampling (RSS), which is tailored for Gradient Boosting Decision Tree (GBDT), a machine-learned ranking method widely used in practice by major commercial search engines for ranking. We leverage the property of GBDT that samples close to the decision boundary tend to be sensitive to perturbations and design the active learning strategy accordingly. We further theoretically analyze the proposed strategy by exploring the connection between the sensitivity used for sample selection and model regularization to provide a potentially theoretical guarantee w.r.t. the generalization capability. Considering that the performance metrics of ranking overweight the top-ranked items, item rank is incorporated into the selection function. In addition, we generalize the proposed technique to several other base learners to show its potential applicability in a wide variety of applications. Substantial experimental results on both the benchmark dataset and a real-world dataset have demonstrated that our proposed active learning strategy is highly effective in selecting the most informative examples.
机译:对于许多信息检索应用程序而言,学习排名已变得越来越重要。为了减少训练数据准备时的标记成本,已经提出了许多主动采样算法。在本文中,我们提出了一种新的主​​动的基于等级的学习策略,称为基于等级的敏感度采样(RSS),它是针对梯度提升决策树(GBDT)量身定制的,该方法是大型商业机构在实践中广泛使用的一种机器学习的排名方法搜索引擎排名。我们利用GBDT的属性,即靠近决策边界的样本倾向于对扰动敏感,并据此设计主动学习策略。我们通过探索用于样本选择的敏感性与模型正则化之间的联系,从理论上进一步分析提出的策略,以提供可能的理论保证。泛化能力。考虑到排名的性能指标超过了排名靠前的项目,因此将项目排名纳入选择功能。另外,我们将提出的技术推广到其他几个基础学习者,以显示其在各种应用中的潜在适用性。在基准数据集和真实数据集上的大量实验结果表明,我们提出的主动学习策略在选择信息量最大的示例方面非常有效。

著录项

  • 来源
    《ACM transactions on the web》 |2015年第1期|3.1-3.31|共31页
  • 作者单位

    Shanghai Key Laboratory of Multimedia Processing and Transmissions, Shanghai Jiao Tong University, Shanghai 200240, China;

    Shanghai Key Laboratory of Multimedia Processing and Transmissions, Shanghai Jiao Tong University, Shanghai 200240, China;

    Shanghai Key Laboratory of Multimedia Processing and Transmissions, Shanghai Jiao Tong University, Shanghai 200240, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Active learning; noise injection; ranking; sensitivity sampling;

    机译:主动学习;噪声注入;排行;灵敏度采样;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号