首页> 外文OA文献 >Multiple instance learning for re-ranking of web image search results Görsel arama sonuçlarinin çoklu örnekle öǧrenme yöntemi̇yle yeni̇den siralanmasi
【2h】

Multiple instance learning for re-ranking of web image search results Görsel arama sonuçlarinin çoklu örnekle öǧrenme yöntemi̇yle yeni̇den siralanmasi

机译:多实例学习,用于重新排列网络图像搜索结果

摘要

In this study, we propose a weakly-supervised multiple instance learning (MIL) method to improve the results of text-based image search engines. In this approach, ranked image list of search engine for a keyword query is treated as weak-positive input data, and with additional negative input data, multiple instance learning bags are constructed. Then, Multiple Instance problem is converted to a standard supervised learning problem by mapping each bag into a feature space defined by instances in training bags using a bag-instance similarity measure. At the end, linear SVM is used to construct a classifier to re-rank keyword-based image search data. Based on the classification scores, we re-rank the images and improve precision over the search engine results. In this respect, we also present our experiments conducted to find a pattern for multiple instance bag sizes to obtain better average precision. © 2012 IEEE.
机译:在这项研究中,我们提出了一种弱监督的多实例学习(MIL)方法,以改善基于文本的图像搜索引擎的结果。在这种方法中,将用于关键字查询的搜索引擎的排名图像列表视为弱阳性输入数据,并使用其他否定输入数据构建了多个实例学习包。然后,通过使用袋实例相似性度量将每个包映射到由训练包中的实例定义的特征空间,将多实例问题转换为标准的监督学习问题。最后,线性SVM用于构造分类器以对基于关键字的图像搜索数据重新排序。根据分类得分,我们对图像进行重新排名,并提高了搜索引擎结果的准确性。在这方面,我们还介绍了我们的实验,以找到多个实例袋子尺寸的图案,以获得更好的平均精度。 ©2012 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号