首页> 外文期刊>ACM transactions on the web >Neighbor Selection and Weighting in User-Based Collaborative Filtering: A Performance Prediction Approach
【24h】

Neighbor Selection and Weighting in User-Based Collaborative Filtering: A Performance Prediction Approach

机译:基于用户的协同过滤中的邻居选择和权重:一种性能预测方法

获取原文
获取原文并翻译 | 示例

摘要

User-based collaborative filtering systems suggest interesting items to a user relying on similar-minded people called neighbors. The selection and weighting of these neighbors characterize the different recommendation approaches. While standard strategies perform a neighbor selection based on user similarities, trust-aware recommendation algorithms rely on other aspects indicative of user trust and reliability. In this article we restate the trust-aware recommendation problem, generalizing it in terms of performance prediction techniques, whose goal is to predict the performance of an information retrieval system in response to a particular query. We investigate how to adopt the preceding generalization to define a unified framework where we conduct an objective analysis of the effectiveness (predictive power) of neighbor scoring functions. The proposed framework enables discriminating whether recommendation performance improvements are caused by the used neighbor scoring functions or by the ways these functions are used in the recommendation computation. We evaluated our approach with several state-of-the-art and novel neighbor scoring functions on three publicly available datasets. By empirically comparing four neighbor quality metrics and thirteen performance predictors, we found strong predictive power for some of the predictors with respect to certain metrics. This result was then validated by checking the final performance of recommendation strategies where predictors are used for selecting and/or weighting user neighbors. As a result, we have found that, by measuring the predictive power of neighbor performance predictors, we are able to anticipate which predictors are going to perform better in neighbor-scoring-powered versions of a user-based collaborative filtering algorithm.
机译:基于用户的协作过滤系统向依赖相似想法的人(称为邻居)的用户建议有趣的项目。这些邻居的选择和权重表征了不同的推荐方法。虽然标准策略基于用户相似性执行邻居选择,但是信任感知推荐算法依赖于指示用户信任和可靠性的其他方面。在本文中,我们将重新陈述信任感知的推荐问题,并根据性能预测技术对其进行概括,其目的是预测响应特定查询的信息检索系统的性能。我们研究如何采用前面的归纳法来定义一个统一的框架,在该框架中我们对邻居评分功能的有效性(预测能力)进行客观分析。所提出的框架使得能够区分推荐性能的提高是由所使用的邻居评分功能还是由这些功能在推荐计算中的使用方式引起的。我们在三个可公开获得的数据集上使用了几种最新的和新颖的邻居评分功能对我们的方法进行了评估。通过经验比较四个邻居质量指标和13个性能预测指标,我们发现某些指标相对于某些指标具有很强的预测能力。然后,通过检查推荐策略的最终性能来验证此结果,其中使用预测变量选择和/或加权用户邻居。结果,我们发现,通过测量邻居性能预测变量的预测能力,我们能够预测哪些预测变量在基于用户协作过滤算法的邻居评分驱动版本中将表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号