首页> 外文期刊>ACM transactions on the web >Analyzing the Adoption and Cascading Process of OSN-Based Gifting Applications: An Empirical Study
【24h】

Analyzing the Adoption and Cascading Process of OSN-Based Gifting Applications: An Empirical Study

机译:基于OSN的礼品应用程序的采用和级联过程的实证研究

获取原文
获取原文并翻译 | 示例

摘要

To achieve growth in the user base of online social networks-(OSN) based applications, word-of-mouth diffusion mechanisms, such as user-to-user invitations, are widely used. This article characterizes the adoption and cascading process of OSN-based applications that grow via user invitations. We analyze a detailed large-scale dataset of a popular Facebook gifting application, iHeart, that contains more than 2 billion entries of user activities generated by 190 million users during a span of 64 weeks. We investigate (1) how users invite their friends to an OSN-based application, (2) how application adoption of an individual user can be predicted, (3) what factors drive the cascading process of application adoptions, and (4) what are the good predictors of the ultimate cascade sizes. We find that sending or receiving a large number of invitations does not necessarily help to recruit new users to iHeart. We also find that the average success ratio of inviters is the most important feature in predicting an adoption of an individual user, which indicates that the effectiveness of inviters has strong predictive power with respect to application adoption. Based on the lessons learned from our analyses, we build and evaluate learning-based models to predict whether a user will adopt iHeart. Our proposed model that utilizes additional activity information of individual users from other similar types of gifting applications can achieve high precision (83%) in predicting adoptions in the target application (i.e., iHeart). We next identify a set of distinctive features that are good predictors of the growth of the application adoptions in terms of final population size. We finally propose a prediction model to infer whether a cascade of application adoption will continue to grow in the future based on observing the initial adoption process. Results show that our proposed model can achieve high precision (over 80%) in predicting large cascades of application adoptions. We believe our work can give an important implication in resource allocation of OSN-based product stakeholders, for example, via targeted marketing.
机译:为了实现基于在线社交网络(OSN)的应用程序的用户群的增长,广泛使用了口碑传播机制,例如用户对用户的邀请。本文介绍了通过用户邀请而增长的基于OSN的应用程序的采用和级联过程。我们分析了流行的Facebook礼品应用程序iHeart的详细大规模数据集,其中包含1.9亿用户在64周内生成的超过20亿个用户活动条目。我们研究(1)用户如何邀请其朋友使用基于OSN的应用程序,(2)如何预测单个用户的应用程序采用率,(3)哪些因素驱动应用程序采用率的级联过程,以及(4)什么是最终级联大小的良好预测指标。我们发现发送或接收大量邀请并不一定有助于吸引新用户加入iHeart。我们还发现邀请者的平均成功率是预测单个用户采用率的最重要特征,这表明邀请者的有效性对应用程序采用具有强大的预测能力。根据从我们的分析中学到的经验教训,我们构建和评估基于学习的模型,以预测用户是否会采用iHeart。我们提出的模型利用了其他类似类型的礼品应用程序中各个用户的其他活动信息,可以在预测目标应用程序(即iHeart)的采用率方面达到较高的准确性(83%)。接下来,我们将确定一组独特的功能,这些功能可以根据最终人口规模很好地预测应用程序采用量的增长。我们最终提出了一个预测模型,该模型可以通过观察初始采用过程来推断将来应用程序采用的级联是否会继续增长。结果表明,我们的模型可以在预测应用程序的大范围级联时实现高精度(超过80%)。我们相信我们的工作可以对基于OSN的产品利益相关者的资源分配产生重要影响,例如,通过有针对性的营销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号