首页> 外文期刊>ACM transactions on the web >Detecting Cyberbullying and Cyberaggression in Social Media
【24h】

Detecting Cyberbullying and Cyberaggression in Social Media

机译:在社交媒体中检测网络欺凌和网络侵略

获取原文

摘要

Cyberbullying and cyberaggression are increasingly worrisome phenomena affecting people across all demographics. More than half of young social media users worldwide have been exposed to such prolonged and/or coordinated digital harassment. Victims can experience a wide range of emotions, with negative consequences such as embarrassment, depression, isolation from other community members, which embed the risk to lead to even more critical consequences, such as suicide attempts.In this work, we take the first concrete steps to understand the characteristics of abusive behavior in Twitter, one of today's largest social media platforms. We analyze 1.2 million users and 2.1 million tweets, comparing users participating in discussions around seemingly normal topics like the NBA, to those more likely to be hate-related, such as the Gamergate controversy, or the gender pay inequality at the BBC station. We also explore specific manifestations of abusive behavior, i.e., cyberbullying and cyberaggression, in one of the hate-related communities (Gamergate). We present a robust methodology to distinguish bullies and aggressors from normal Twitter users by considering text, user, and network-based attributes. Using various state-of-the-art machine-learning algorithms, we classify these accounts with over 90% accuracy and AUC. Finally, we discuss the current status of Twitter user accounts marked as abusive by our methodology and study the performance of potential mechanisms that can be used by Twitter to suspend users in the future.
机译:网络欺凌和网络侵略日益令人担忧,影响着所有人口统计领域的人们。全球超过一半的年轻社交媒体用户都受到了这种长时间和/或协调的数字骚扰。受害者可能会经历各种各样的情绪,并产生诸如尴尬,沮丧,与其他社区成员孤立等负面后果,这有可能导致更严重后果的风险,例如自杀未遂。步骤以了解Twitter(当今最大的社交媒体平台之一)中的虐待行为的特征。我们分析了120万用户和210万条推文,将参加围绕NBA等看似正常话题的讨论的用户与更可能与仇恨相关的话题(如Gamergate争议或BBC站的性别薪酬不平等)进行了比较。我们还探讨了与仇恨相关的社区之一(Gamergate)中虐待行为的具体表现,即网络欺凌和网络侵略。我们提出一种可靠的方法,通过考虑文本,用户和基于网络的属性来区分欺凌者和侵略者与正常的Twitter用户。使用各种最新的机器学习算法,我们以90%以上的准确性和AUC对这些帐户进行分类。最后,我们讨论了被我们的方法标记为滥用的Twitter用户帐户的当前状态,并研究了潜在的机制的性能,这些机制可以被Twitter用来在将来暂停用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号