首页> 外文期刊>ACM transactions on software engineering and methodology >Multi-objective Integer Programming Approaches for Solving the Multi-criteria Test-suite Minimization Problem: Towards Sound and Complete Solutions of a Particular Search-based Software-engineering Problem
【24h】

Multi-objective Integer Programming Approaches for Solving the Multi-criteria Test-suite Minimization Problem: Towards Sound and Complete Solutions of a Particular Search-based Software-engineering Problem

机译:用于解决多标准测试 - 套件最小化问题的多目标整数编程方法:朝向特定搜索的软件工程问题的声音和完整解决方案

获取原文
获取原文并翻译 | 示例

摘要

Test-suite minimization is one key technique for optimizing the software testing process. Due to the need to balance multiple factors, multi-criteria test-suite minimization (MCTSM) becomes a popular research topic in the recent decade. The MCTSM problem is typically modeled as integer linear programming (ILP) problem and solved with weighted-sum single objective approach. However, there is no existing approach that can generate sound (i.e., being Pareto-optimal) and complete (i.e., covering the entire Pareto front) Pareto-optimal solution set, to the knowledge of the authors. In this work, we first prove that the ILP formulation can accurately model the MCTSM problem and then propose the multi-objective integer programming (MOIP) approaches to solve it. We apply our MOIP approaches on three specific MCTSM problems and compare the results with those of the cutting-edge methods, namely, NonlinearFormulation_LinearSolver (NF_LS) and two Multi-Objective Evolutionary Algorithms (MOEAs). The results show that our MOIP approaches can always find sound and complete solutions on five subject programs, using similar or significantly less time than NF_LS and two MOEAs do. The current experimental results are quite promising, and our approaches have the potential to be applied for other similar search-based software engineering problems.
机译:测试套件最小化是优化软件测试过程的一种关键技术。由于需要平衡多个因素,多标准测试 - 套件最小化(MCTSM)成为最近十年的流行研究主题。 MCTSM问题通常被建模为整数线性编程(ILP)问题,并以加权和单个目标方法解决。然而,没有现有的方法可以生成声音(即,帕累托 - 最佳)和完整的(即,覆盖整个帕累托前部)帕累托最优解决方案,以了解作者的知识。在这项工作中,我们首先证明ILP配方可以准确地模拟MCTSM问题,然后提出多目标整数编程(MOIP)方法来解决它。我们在三个特定的MCTSM问题上应用我们的MoIP方法,并将结果与​​尖端方法的结果进行比较,即非线性格式_Linearsolver(NF_LS)和两个多目标进化算法(MOEAS)。结果表明,我们的MoIP方法可以始终在五个主题方案上找到声音和完整的解决方案,使用比NF_LS和两个MOEAS执行类似的或明显更少的时间。目前的实验结果非常有前途,我们的方法有可能适用于其他类似的基于搜索的软件工程问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号