首页> 外文期刊>ACM transactions on software engineering and methodology >A Defect Estimator for Source Code: Linking Defect Reports with Programming Constructs Usage Metrics
【24h】

A Defect Estimator for Source Code: Linking Defect Reports with Programming Constructs Usage Metrics

机译:源代码的缺陷估计器:将缺陷报告与编程构造使用量指标链接

获取原文
获取原文并翻译 | 示例

摘要

An important issue faced during software development is to identify defects and the properties of those defects, if found, in a given source file. Determining defectiveness of source code assumes significance due to its implications on software development and maintenance cost. We present a novel system to estimate the presence of defects in source code and detect attributes of the possible defects, such as the severity of defects. The salient elements of our system are: (i) a dataset of newly introduced source code metrics, called PROgramming CONstruct (PROCON) metrics, and (ii) a novel Machine-Learning (ML)-based system, called Defect Estimator for Source Code (DESCo), that makes use of PROCON dataset for predicting defectiveness in a given scenario. The dataset was created by processing 30,400+ source files written in four popular programming languages, viz., C, C++, Java, and Python. The results of our experiments show that DESCo system outperforms one of the state-of-the-art methods with an improvement of 44.9%. To verify the correctness of our system, we compared the performance of 12 different ML algorithms with 50+ different combinations of their key parameters. Our system achieves the best results with SVM technique with a mean accuracy measure of 80.8%.
机译:在软件开发过程中面临的一个重要问题是在给定的源文件中识别缺陷以及这些缺陷的属性(如果找到)。确定源代码的缺陷之所以具有重要意义,是因为其对软件开发和维护成本的影响。我们提出了一个新颖的系统来估计源代码中缺陷的存在并检测可能的缺陷的属性,例如缺陷的严重性。我们系统的主要元素是:(i)新引入的源代码指标的数据集,称为PROgramming建设(PROCON)指标,以及(ii)基于新颖的基于机器学习(ML)的系统,称为源代码缺陷估计器(DESCo),它利用PROCON数据集预测给定情况下的缺陷。通过处理30,400多种以四种流行编程语言(即C,C ++,Java和Python)编写的源文件来创建数据集。我们的实验结果表明,DESCo系统的性能优于最新技术之一,改进了44.9%。为了验证我们系统的正确性,我们比较了12种不同的ML算法及其50多种关键参数组合的性能。我们的系统使用SVM技术获得了最佳结果,平均准确度为80.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号