首页> 外文期刊>ACM transactions on software engineering and methodology >Software Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling
【24h】

Software Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling

机译:通过贝叶斯推断和合成Bootstrap重采样进行软件工作间隔预测

获取原文
获取原文并翻译 | 示例

摘要

Software effort estimation (SEE) usually suffers from inherent uncertainty arising from predictive model limitations and data noise. Relying on point estimation only may ignore the uncertain factors and lead project managers (PMs) to wrong decision making. Prediction intervals (PIs) with confidence levels (CLs) present a more reasonable representation of reality, potentially helping PMs to make better-informed decisions and enable more flexibility in these decisions. However, existing methods for PIs either have strong limitations or are unable to provide informative PIs. To develop a "better" effort predictor, we propose a novel PI estimator called Synthetic Bootstrap ensemble of Relevance Vector Machines (SynB-RVM) that adopts Bootstrap resampling to produce multiple RVM models based on modified training bags whose replicated data projects are replaced by their synthetic counterparts. We then provide three ways to assemble those RVM models into a final probabilistic effort predictor, from which PIs with CLs can be generated. When used as a point estimator, SynB-RVM can either significantly outperform or have similar performance compared with other investigated methods. When used as an uncertain predictor, SynB-RVM can achieve significantly narrower PIs compared to its base learner RVM. Its hit rates and relative widths are no worse than the other compared methods that can provide uncertain estimation.
机译:软件工作量估计(SEE)通常遭受因预测模型限制和数据噪声而引起的固有不确定性。仅依靠点估计可能会忽略不确定因素,并导致项目经理(PM)做出错误的决策。具有置信度(CL)的预测间隔(PI)代表了对现实的更合理表示,有可能帮助PM做出更明智的决策,并使这些决策具有更大的灵活性。但是,现有的PI的方法要么有很强的局限性,要么无法提供信息丰富的PI。为了开发“更好”的工作量预测器,我们提出了一种新的PI估计器,称为相关矢量机(SynB-RVM)的综合Bootstrap集成,它采用Bootstrap重采样以基于修改后的训练包(替换了复制的数据项目)的多个RVM模型来生成由他们的综合同行。然后,我们提供了三种将这些RVM模型组装成最终概率预测指标的方法,可以从中生成具有CL的PI。当用作点估计器时,与其他研究方法相比,SynB-RVM可以显着胜过或具有类似的性能。与基础学习器RVM相比,当SynB-RVM用作不确定的预测器时,可以实现明显更窄的PI。它的命中率和相对宽度不比可以提供不确定估计的其他比较方法差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号