首页> 外文期刊>The Journal of Systems and Software >Analyzing defect inflow distribution and applying Bayesian inference method for software defect prediction in large software projects
【24h】

Analyzing defect inflow distribution and applying Bayesian inference method for software defect prediction in large software projects

机译:分析缺陷流入分布并将贝叶斯推理方法应用于大型软件项目中的软件缺陷预测

获取原文
获取原文并翻译 | 示例

摘要

Tracking and predicting quality and reliability is a major challenge in large and distributed software development projects. A number of standard distributions have been successfully used in reliability engineering theory and practice, common among these for modeling software defect inflow being exponential, Weibull, beta and Non-Homogeneous Poisson Process (NHPP). Although standard distribution models have been recognized in reliability engineering practice, their ability to fit defect data from proprietary and OSS software projects is not well understood. Lack of knowledge about underlying defect inflow distribution also leads to difficulty in applying Bayesian based inference methods for software defect prediction. In this paper we explore the defect inflow distribution of total of fourteen large software projects/release from two industrial domain and open source community. We evaluate six standard distributions for their ability to fit the defect inflow data and also assess which information criterion is practical for selecting the distribution with best fit. Our results show that beta distribution provides the best fit to the defect inflow data for all industrial projects as well as majority of OSS projects studied. In the paper we also evaluate how information about defect inflow distribution from historical projects is applied for modeling the prior beliefs/experience in Bayesian analysis which is useful for making software defect predictions early during the software project lifecycle.
机译:在大型和分布式软件开发项目中,跟踪和预测质量和可靠性是一项重大挑战。可靠性工程理论和实践中已成功使用了许多标准分布,其中常见的用于建模软件缺陷流入的指数分布,Weibull,β和非均质泊松过程(NHPP)。尽管标准分布模型已经在可靠性工程实践中得到认可,但是它们对来自专有和OSS软件项目的缺陷数据进行拟合的能力仍未得到很好的理解。缺乏有关潜在缺陷流入分布的知识也导致难以将基于贝叶斯的推理方法应用于软件缺陷预测。在本文中,我们探索了来自两个工业领域和开源社区的总共14个大型软件项目/发行版的缺陷流入分布。我们评估了六个标准分布的拟合缺陷流入数据的能力,并评估了哪种信息标准对于选择最佳拟合的分布是切实可行的。我们的结果表明,β分布最适合所有工业项目以及研究的大多数OSS项目的缺陷流入数据。在本文中,我们还评估了历史项目中缺陷流入分布的信息如何用于对贝叶斯分析中的先验信念/经验进行建模,这对于在软件项目生命周期的早期进行软件缺陷预测很有用。

著录项

  • 来源
    《The Journal of Systems and Software》 |2016年第7期|229-244|共16页
  • 作者单位

    Department of Computer Science & Engineering, Chalmers/University of Gothenburg, Hoerselgangen 5, 417 56 Goeteborg, Sweden;

    Department of Computer Science & Engineering, Chalmers/University of Gothenburg, Hoerselgangen 5, 417 56 Goeteborg, Sweden;

    Department of Computer Science & Engineering, Chalmers/University of Gothenburg, Hoerselgangen 5, 417 56 Goeteborg, Sweden;

    School of Informatics, University of Skoevde, Sweden;

    Volvo Car Group, Goeteborg, Sweden;

    Ericsson SW Research, Ericsson AB, 412 96 Gothenburg, Sweden;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Software; SRGM; Defect Inflow;

    机译:软件;SRGM;缺陷流入;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号