首页> 外文期刊>ACM transactions on sensor networks >Blind Joint 2-D DOA/Symbols Estimation for 3-D Millimeter Wave Massive MIMO Communication Systems
【24h】

Blind Joint 2-D DOA/Symbols Estimation for 3-D Millimeter Wave Massive MIMO Communication Systems

机译:3-D毫米波大规模MIMO通信系统的盲联合2D DOA /符号估计

获取原文
获取原文并翻译 | 示例

摘要

By using a large number of antenna (sensor) elements at the receivers, massive multi-input multi-output (MIMO) offers many benefits for 5G communication systems, such as a huge spectral efficiency gain, significant reduction of latency, and robustness to interference. However, to get these benefits of massive MIMO, accuracy of the channel state information obtained at the transmitter is required. This article proposes a approach for blind joint channel/symbols estimation in 3-D millimeter wave massive MIMO systems based on tensor factorization. More specifically, we suggest a direction-of-arrival (DOA)-based channel estimation method, which provides the best performance in terms of error bound for channel estimation. We show that the massive MIMO signals can be expressed as a third-order (3-D) tensor model, where the matrices of channel (2-D DOA) and symbols can be viewed as two independent factor matrices. Such a hybrid tensorial modeling enables a blind joint estimation of 2-D DOA/symbols. To learn the tensor model, we develop two least squares-based algorithms. The first one is delta bilinear alternating least squares (DBALS) algorithm that exploits the increment values between two iterations of the factor matrices to provide the initializations for such matrices. This avoids the slow convergence caused by random initializations for factor matrices found in the traditional least squares algorithms. The other one is Vandermonde constrained DBALS that takes into account the potential Vandermonde nature structure of the DOA matrix in the DBALS algorithm. This provides the estimation for the DOA matrix and gives a better uniqueness results for the use of tensor model. The performance of the proposed approach is illustrated by means of simulation results, and a comparison is made with the recent approaches. Besides a blind joint 2-D DOA/symbols estimation, our approach offers a better performance due to avoiding the random initializations and taking in the Vandermonde structure of DOA matrix.
机译:通过在接收器上使用大量天线(传感器)元素,大规模多输入多输出(MIMO)为5G通信系统提供了许多好处,例如巨大的频谱效率增益,显着减少的延迟以及对干扰的鲁棒性。然而,为了获得大规模MIMO的这些好处,需要在发射机处获得的信道状态信息的准确性。本文提出了一种基于张量分解的3-D毫米波大规模MIMO系统中盲联合信道/符号估计的方法。更具体地说,我们建议基于到达方向(DOA)的信道估计方法,该方法在信道估计的误差范围方面可提供最佳性能。我们表明,大规模MIMO信号可以表示为三阶(3-D)张量模型,其中通道(2-D DOA)和符号矩阵可以视为两个独立的因子矩阵。这样的混合张量建模使得能够对2-D DOA /符号进行盲联合估计。为了学习张量模型,我们开发了两个基于最小二乘法的算法。第一个是增量双线性交替最小二乘(DBALS)算法,该算法利用因子矩阵的两次迭代之间的增量值来提供此类矩阵的初始化。这避免了由对传统最小二乘算法中发现的因子矩阵进行随机初始化而导致的缓慢收敛。另一个是范德蒙约束的DBALS,它考虑了DBALS算法中DOA矩阵的潜在范德蒙德自然结构。这为DOA矩阵提供了估计,并为使用张量模型提供了更好的唯一性结果。仿真结果说明了该方法的性能,并与最新方法进行了比较。除了盲联合二维DOA /符号估计之外,由于避免了随机初始化并采用DOA矩阵的Vandermonde结构,我们的方法还提供了更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号