首页> 外文期刊>ACM transactions on sensor networks >Collaborative Mobile Crowdsensing in Opportunistic D2D Networks: A Graph-based Approach
【24h】

Collaborative Mobile Crowdsensing in Opportunistic D2D Networks: A Graph-based Approach

机译:机会D2D网络中的协作移动人群拥挤:基于图的方法

获取原文
获取原文并翻译 | 示例

摘要

With the remarkable proliferation of smart mobile devices, mobile crowdsensing has emerged as a compelling paradigm to collect and share sensor data from surrounding environment. In many application scenarios, due to unavailable wireless network or expensive data transfer cost, it is desirable to offload crowdsensing data traffic on opportunistic device-to-device (D2D) networks. However, coupling between mobile crowdsensing and D2D networks, it raises new technical challenges caused by intermittent routing and indeterminate settings. Considering the operations of data sensing, relaying, aggregating, and uploading simultaneously, in this article, we study collaborative mobile crowdsensing in opportunistic D2D networks. Toward the concerns of sensing data quality, network performance and incentive budget, Minimum-Delay-Maximum-Coverage (MDMC) problem and Minimum-Overhead-Maximum-Coverage (MOMC) problem are formalized to optimally search a complete set of crowdsensing task execution schemes over user, temporal, and spatial three dimensions. By exploiting mobility traces of users, we propose an unified graph-based problem representation framework and transform MDMC and MOMC problems to a connection routing searching problem on weighted directed graphs. Greedy-based recursive optimization approaches are proposed to address the two problems with a divide-and-conquer mode. Empirical evaluation on both real-world and synthetic datasets validates the effectiveness and efficiency of our proposed approaches.
机译:随着智能移动设备的迅猛发展,移动人群感知已经成为一种吸引人的范例,可以收集和共享来自周围环境的传感器数据。在许多应用场景中,由于不可用的无线网络或昂贵的数据传输成本,希望在机会性设备到设备(D2D)网络上卸载众包数据流量。但是,在移动人群感应和D2D网络之间耦合时,由于间歇性路由和不确定的设置而带来了新的技术挑战。考虑到数据传感,中继,聚合和上传同时进行的操作,在本文中,我们研究机会D2D网络中的协作移动人群感知。针对感测数据质量,网络性能和激励预算,最小延迟最大覆盖量(MDMC)问题和最小开销最大覆盖量(MOMC)问题的形式,可以最佳地搜索一组完整的人群感应任务执行方案超过用户,时间和空间三个维度。通过利用用户的移动轨迹,我们提出了一个基于图的统一问题表示框架,并将MDMC和MOMC问题转换为加权有向图上的连接路由搜索问题。提出了基于贪婪的递归优化方法来解决分而治之的两个问题。对真实数据集和综合数据集的经验评估验证了我们提出的方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号