首页> 外文期刊>ACM transactions on sensor networks >Bi-dimensional Signal Compression Based on Linear Prediction Coding: Application to WSN
【24h】

Bi-dimensional Signal Compression Based on Linear Prediction Coding: Application to WSN

机译:基于线性预测编码的二维信号压缩:在无线传感器网络中的应用

获取原文
获取原文并翻译 | 示例

摘要

The big data phenomenon has gained much attention in the wireless communications field. Addressing big data is a challenging and time-demanding task that requires a large computational infrastructure to ensure successful data processing and analysis. In such a context, data compression helps to reduce the amount of data required to represent redundant information while reliably preserving the original content as much as possible. We here consider Compressed Sensing (CS) theory for extracting critical information and representing it with substantially reduced measurements of the original data. For CS application, it is, however, required to design a convenient sparsifying basis or transform. In this work, a large amount of bi-dimensional (2D) correlated signals are considered for compression. The envisaged application is that of data collection in large scale Wireless Sensor Networks. We show that, using CS, it is possible to recover a large amount of data from the collection of a reduced number of sensors readings. In this way, CS use makes it possible to recover large data sets with acceptable accuracy as well as reduced global scale cost. For sparsifying basis search, in addition to conventional sparsity-inducing methods, we propose a new transformation based on Linear Prediction Coding (LPC) that effectively exploits correlation between neighboring data. The steps of data aggregation using CS include sparse compression basis design and then decomposition matrix construction and recovery algorithm application. Comparisons to the case of one-dimensional (1D) reading and to conventional 2D compression methods show the benefit from the better exploitation of the correlation by herein envisaged 2D processing. Simulation results on both synthetic and real WSN data demonstrate that the proposed LPC approach with 2D scenario realizes significant reconstruction performance enhancement compared to former conventional transformations.
机译:大数据现象已在无线通信领域引起了广泛关注。处理大数据是一项艰巨且耗时的任务,需要庞大的计算基础架构来确保成功进行数据处理和分析。在这种情况下,数据压缩有助于减少表示冗余信息所需的数据量,同时尽可能地可靠地保留原始内容。在这里,我们考虑使用压缩感知(CS)理论来提取关键信息,并通过大幅减少原始数据的测量来表示它。但是,对于CS应用程序,需要设计一个方便的稀疏基础或转换。在这项工作中,大量的二维(2D)相关信号被考虑用于压缩。设想的应用是大规模无线传感器网络中的数据收集。我们表明,使用CS,可以从减少的传感器读数数量集合中恢复大量数据。这样,CS的使用就可以以可接受的精度恢复大型数据集,并降低了全球规模的成本。对于稀疏基础搜索,除了常规的稀疏性诱导方法外,我们还提出了一种基于线性预测编码(LPC)的新变换,该变换可有效利用相邻数据之间的相关性。使用CS进行数据聚合的步骤包括稀疏压缩基础设计,然后分解矩阵的构造和恢复算法的应用。与一维(1D)读取的情况和常规2D压缩方法的比较表明,通过此处设想的2D处理可更好地利用相关性,从而可从中受益。对合成和实际WSN数据的仿真结果表明,与以前的常规转换相比,具有2D场景的LPC方法实现了显着的重建性能增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号