首页> 外文期刊>ACM transactions on sensor networks >AutoCalib: Automatic Traffic Camera Calibration at Scale
【24h】

AutoCalib: Automatic Traffic Camera Calibration at Scale

机译:AutoCalib:大规模自动交通摄像机校准

获取原文
获取原文并翻译 | 示例

摘要

Emerging smart cities are typically equipped with thousands of outdoor cameras. However, these cameras are usually not calibrated, i.e., information such as their precise mounting height and orientation is not available. Calibrating these cameras allows measurement of real-world distances from the video, thereby enabling a wide range of novel applications such as identifying speeding vehicles and city road planning. Unfortunately, robust camera calibration is a manual process today and is not scalable. In this article, we propose AutoCalib, a system for scalable, automatic calibration of traffic cameras. AutoCalib exploits deep learning to extract selected key-point features from car images in the video and uses a novel filtering and aggregation algorithm to automatically produce a robust estimate of the camera calibration parameters from just hundreds of samples. We have implemented AutoCalib as a service on Azure that takes in a video segment and computes the camera calibration parameters. Using video from real-world traffic cameras, we show that AutoCalib is able to estimate real-world distances with an error of less than 12%.
机译:新兴的智慧城市通常会配备数千个室外摄像机。但是,这些摄像机通常未经校准,即无法获得诸如精确安装高度和方向之类的信息。校准这些摄像机可以测量与视频的真实距离,从而实现各种新颖的应用,例如识别超速车辆和城市道路规划。不幸的是,强大的相机校准是当今的手动过程,无法扩展。在本文中,我们提出了AutoCalib,这是一种可扩展,自动校准交通摄像机的系统。 AutoCalib利用深度学习从视频中的汽车图像中提取选定的关键点特征,并使用新颖的过滤和聚合算法从仅数百个样本中自动生成对摄像机校准参数的可靠估计。我们已将AutoCalib实施为Azure上的一项服务,该服务接受视频段并计算摄像机校准参数。使用来自现实世界交通摄像机的视频,我们证明了AutoCalib能够估计现实世界的距离,误差小于12%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号