首页> 外文期刊>ACM transactions on reconfigurable technology and systems >Reconfigurable Fault Tolerance: A Comprehensive Framework for Reliable and Adaptive FPGA-Based Space Computing
【24h】

Reconfigurable Fault Tolerance: A Comprehensive Framework for Reliable and Adaptive FPGA-Based Space Computing

机译:可重配置的容错能力:用于基于FPGA的可靠和自适应空间计算的综合框架

获取原文
获取原文并翻译 | 示例
           

摘要

Commercial SRAM-based, field-programmable gate arrays (FPGAs) have the potential to provide space applications with the necessary performance to meet next-generation mission requirements. However, mitigating an FPGA's susceptibility to single-event upset (SEU) radiation is challenging. Triple-modular redundancy (TMR) techniques are traditionally used to mitigate radiation effects, but TMR incurs substantial overheads such as increased area and power requirements. In order to reduce these overheads while still providing sufficient radiation mitigation, we propose a reconfigurable fault tolerance (RFT) framework that enables system designers to dynamically adjust a system's level of redundancy and fault mitigation based on the varying radiation incurred at different orbital positions. This framework includes an adaptive hardware architecture that leverages FPGA reconfigurable techniques to enable significant processing to be performed efficiently and reliably when environmental factors permit. To accurately estimate upset rates, we propose an upset rate modeling tool that captures time-varying radiation effects for arbitrary satellite orbits using a collection of existing, publically available tools and models. We perform fault-injection testing on a prototype RFT platform to validate the RFT architecture and RFT performability models. We combine our RFT hardware architecture and the modeled upset rates using phased-mission Markov modeling to estimate performability gains achievable using our framework for two case-study orbits.
机译:基于商用SRAM的现场可编程门阵列(FPGA)具有为太空应用提供必要性能以满足下一代任务要求的潜力。但是,减轻FPGA对单事件翻转(SEU)辐射的敏感性具有挑战性。传统上使用三模冗余(TMR)技术来减轻辐射影响,但是TMR会产生大量开销,例如面积和功率需求增加。为了减少这些开销,同时仍然提供足够的辐射缓解能力,我们提出了一种可重构的容错(RFT)框架,该体系结构使系统设计人员可以根据在不同轨道位置发生的辐射量的变化,动态调整系统的冗余度和缓解故障的能力。该框架包括一个自适应硬件体系结构,该体系结构利用FPGA可重配置技术来在环境因素允许的情况下有效且可靠地执行重要处理。为了准确地估计不安率,我们提出了一个不安率建模工具,该工具使用一组现有的,可公开获得的工具和模型来捕获任意卫星轨道随时间变化的辐射效应。我们在原型RFT平台上执行故障注入测试,以验证RFT架构和RFT性能模型。我们将RFT硬件架构和建模的扰乱率结合起来,使用相差任务马尔可夫模型来估计,使用我们的框架对两个案例研究轨道可实现的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号