首页> 外文学位 >Reconfigurable fault tolerance for space systems.
【24h】

Reconfigurable fault tolerance for space systems.

机译:可重新配置的空间系统容错能力。

获取原文
获取原文并翻译 | 示例

摘要

Commercial SRAM-based, field-programmable gate arrays (FPGAs) have the capability to provide space applications with the necessary performance, energy-efficiency, and adaptability to meet next-generation mission requirements. However, mitigating an FPGA's susceptibility to radiation-induced faults is challenging. Triple-modular redundancy (TMR) techniques are traditionally used to mitigate radiation effects, but TMR incurs substantial overheads such as increased area and power requirements. In order to reduce overhead while providing sufficient radiation mitigation, this research proposes a framework for reconfigurable fault tolerance (RFT) that enables system designers to dynamically adjust a system's level of redundancy and fault mitigation based on the varying radiation incurred at different orbital positions. To realize this goal and validate the effectiveness of the approach, three areas are investigated and addressed. First, a method for accurately estimating time-varying fault rates in space systems and a reliability and performance model for adaptive systems are needed to quantify the effectiveness of the RFT approach. Using multiple case-study orbits, our models predict that adaptive fault-tolerance strategies are able to improve unavailability by 85% over low-overhead fault tolerance techniques and performability by 128% over traditional, static TMR fault tolerance. Second, low-overhead fault-tolerance techniques which can be used within the RFT framework for improved performance must be investigated. The effectiveness of Algorithm-Based Fault Tolerance (ABFT) for FPGA-based systems is explored for matrix multiplication and FFT. ABFT kernels were developed for an FPGA platform, and reliability was measured using fault-injection testing. We show that matrix multiplication and FFTs with ABFT can provide improved reliability (vulnerability reduced by 98%) with low resource overhead, and scale favorably with additional parallelism. Third, methods for facilitating the integration of RFT hardware into existing PR-based systems and architectures are explored. We expand the RFT framework to be used with bus-based or point-to-point architectures. We design a fault-tolerant task-scheduling algorithm which can schedule RFT tasks in a dynamically-changing fault environment in order to maximize system performability. Combined, these three areas demonstrate the capability of RFT to provide both performance and reliability in space. Using low-overhead fault-tolerance techniques and reconfiguration, RFT can meet the strict constraints of next-generation space systems.
机译:基于商用SRAM的现场可编程门阵列(FPGA)能够为太空应用提供必要的性能,能效和适应性,以满足下一代任务要求。但是,减轻FPGA对辐射引起的故障的敏感性是具有挑战性的。传统上使用三模冗余(TMR)技术来减轻辐射影响,但是TMR会产生大量开销,例如面积和功率需求增加。为了在提供足够的辐射缓解能力的同时减少开销,本研究提出了一种可重构容错(RFT)框架,该体系使系统设计人员能够根据在不同轨道位置发生的辐射变化来动态调整系统的冗余度和缓解错误的能力。为了实现此目标并验证该方法的有效性,对三个领域进行了研究和解决。首先,需要一种用于准确估计空间系统中时变故障率的方法以及一种自适应系统的可靠性和性能模型,以量化RFT方法的有效性。通过使用多个案例研究轨道,我们的模型预测,自适应容错策略比低开销的容错技术能够将不可用性提高85%,与传统的静态TMR容错相比,可以将性能提高128%。第二,必须研究可在RFT框架内使用的低开销容错技术,以提高性能。探索了基于算法的容错(ABFT)对于基于FPGA的系统的有效性,用于矩阵乘法和FFT。 ABFT内核是为FPGA平台开发的,并使用故障注入测试来测量可靠性。我们证明,具有ABFT的矩阵乘法和FFT可以以较低的资源开销提供更高的可靠性(漏洞减少98%),并具有额外的并行性,可以很好地扩展。第三,探讨了有助于将RFT硬件集成到现有的基于PR的系统和体系结构中的方法。我们扩展了RFT框架,以与基于总线或点对点的体系结构一起使用。我们设计了一种容错任务调度算法,该算法可以在动态变化的故障环境中调度RFT任务,以最大程度地提高系统性能。结合起来,这三个领域证明了RFT在太空中提供性能和可靠性的能力。使用低开销的容错技术和重新配置,RFT可以满足下一代空间系统的严格约束。

著录项

  • 作者

    Jacobs, Adam M.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号