首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Attention-Based Modality-Gated Networks for Image-Text Sentiment Analysis
【24h】

Attention-Based Modality-Gated Networks for Image-Text Sentiment Analysis

机译:基于关注的图像文本情感分析的模型门控网络

获取原文
获取原文并翻译 | 示例

摘要

Sentiment analysis of social multimedia data has attracted extensive research interest and has been applied to many tasks, such as election prediction and products evaluation. Sentiment analysis of one modality (e.g., text or image) has been broadly studied. However, not much attention has been paid to the sentiment analysis of multimodal data. Different modalities usually have information that is complementary. Thus, it is necessary to learn the overall sentiment by combining the visual content with text description. In this article, we propose a novel method-Attention-Based Modality-Gated Networks (AMGN)-to exploit the correlation between the modalities of images and texts and extract the discriminative features for multimodal sentiment analysis. Specifically, a visual-semantic attention model is proposed to learn attended visual features for each word. To effectively combine the sentiment information on the two modalities of image and text, a modalitygated LSTM is proposed to learn the multimodal features by adaptively selecting the modality that presents stronger sentiment information. Then a semantic self-attention model is proposed to automatically focus on the discriminative features for sentiment classification. Extensive experiments have been conducted on both manually annotated and machine weakly labeled datasets. The results demonstrate the superiority of our approach through comparison with state-of-the-art models.
机译:社会多媒体数据的情感分析引起了广泛的研究兴趣,并已应用于许多任务,例如选举预测和产品评估。广泛地研究了一种模态的情绪分​​析(例如,文本或图像)。但是,对多模式数据的情感分析并不大量关注。不同的方式通常具有互补的信息。因此,必须通过将视觉内容与文本描述组合来学习整体情绪。在本文中,我们提出了一种新的基于方法的方式 - 基于方式的模型门控网络(AMGN) - 利用图像的模式与文本的模式之间的相关性,并提取多式联情绪分析的辨别特征。具体地,提出了一种视觉语义关注模型来学习每个单词的参与视觉功能。为了有效地将情绪信息与图像和文本的两个方式组合,建议通过自适应地选择具有更强情绪信息的模态来学习多模式特征来学习多模峰特征。然后提出了一种语义自我关注模型来自动关注情绪分类的辨别特征。在手动注释和机器弱标记的数据集中进行了广泛的实验。结果通过与最先进的模型进行了比较来证明我们的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号