首页> 外文期刊>Future generation computer systems >Attention-based sentiment analysis using convolutional and recurrent neural network
【24h】

Attention-based sentiment analysis using convolutional and recurrent neural network

机译:基于注意力的情绪分析使用卷积和经常性神经网络

获取原文
获取原文并翻译 | 示例

摘要

Convolution and recurrent neural network have obtained remarkable performance in natural language processing(NLP). Moreover, from the attention mechanism perspective convolution neural network(CNN) is applied less than recurrent neural network(RNN). Because RNN can learn long-term dependencies and gives better results than CNN. But CNN has its own advantage, can extract high-level features by using its local fix size context at the input level. Thus, this paper proposed a new model based on RNN with CNN-based attention mechanism by using the merits of both architectures together in one model. In the proposed model, first, CNN learns the high-level features of sentence from input representation. Second, we used attention mechanism to get the attention of the model on the features which contribute much in the prediction task by calculating the attention score from features context generated from CNN filters. Finally, these features context from CNN with attention score are commonly used at the RNN to process them sequentially. To validate the model we experiment on three benchmark datasets. Experiment results and their analysis demonstrate the effectiveness of the model.
机译:卷积和经常性神经网络在自然语言处理中获得了显着性能(NLP)。此外,从注意机构透视卷积神经网络(CNN)的应用小于经常性神经网络(RNN)。因为RNN可以学习长期依赖性并提供比CNN更好的结果。但CNN具有自己的优势,可以通过在输入电平使用其本地修复大小上下文提取高级功能。因此,本文提出了一种基于RNN基于CNN的注意机制的新模型,通过在一个模型中使用两个架构的优点。在所提出的模型中,首先,CNN从输入表示中了解句子的高级功能。其次,我们使用注意力机制来引起模型的特征,通过从CNN滤波器产生的特征上下文中的注意力得分来提高预测任务的功能。最后,来自CNN的这些特征上下文具有引人注目评分通常用于RNN以顺序处理它们。验证我们在三个基准数据集上实验的模型。实验结果及其分析证明了模型的有效性。

著录项

  • 来源
    《Future generation computer systems》 |2020年第12期|571-578|共8页
  • 作者单位

    School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China;

    School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China;

    School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China;

    Chair of Smart Cities Technology and Department of Software Engineering College of Computer and Information Sciences King SaudUniversity Riyadh Saudi Arabia;

    Chair of Smart Cities Technology and Department of Software Engineering College of Computer and Information Sciences King SaudUniversity Riyadh Saudi Arabia;

    Department of Computer Engineering College of Computer and Information Sciences King Saud University Riyadh Saudi Arabia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CNN; RNN; Attention mechanism; Sentiment analysis;

    机译:CNN;rnn;注意机制;情绪分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号