首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Bilateral Correspondence Model for Words-and-Pictures Association in Multimedia-Rich Microblogs
【24h】

Bilateral Correspondence Model for Words-and-Pictures Association in Multimedia-Rich Microblogs

机译:多媒体丰富的微博中文字图片关联的双边对应模型

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, the amount of multimedia contents in microblogs is growing significantly. More than 20% of microblogs link to a picture or video in certain large systems. The rich semantics in microblogs provides an opportunity to endow images with higher-level semantics beyond object labels. However, this raises new challenges for understanding the association between multimodal multimedia contents in multimedia-rich microblogs. Disobeying the fundamental assumptions of traditional annotation, tagging, and retrieval systems, pictures and words in multimedia-rich microblogs are loosely associated and a correspondence between pictures and words cannot be established. To address the aforementioned challenges, we present the first study analyzing and modeling the associations between multimodal contents in microblog streams, aiming to discover multimodal topics from microblogs by establishing correspondences between pictures and words in microblogs. We first use a data-driven approach to analyze the new characteristics of the words, pictures, and their association types in microblogs. We then propose a novel generative model called the Bilateral Correspondence Latent Dirichlet Allocation (BC-LDA) model. Our BC-LDA model can assign flexible associations between pictures and words and is able to not only allow picture-word co-occurrence with bilateral directions, but also single modal association. This flexible association can best fit the data distribution, so that the model can discover various types of joint topics and generate pictures and words with the topics accordingly. We evaluate this model extensively on a large-scale real multimedia-rich microblogs dataset. We demonstrate the advantages of the proposed model in several application scenarios, including image tagging, text illustration, and topic discovery. The experimental results demonstrate that our proposed model can significantly and consistently outperform traditional approaches.
机译:如今,微博中的多媒体内容数量显着增长。在某些大型系统中,超过20%的微博客链接到图片或视频。微博客中丰富的语义为图像赋予了超越对象标签的更高层次语义的机会。然而,这对于理解多媒体丰富的微博中的多模式多媒体内容之间的关联性提出了新的挑战。违反传统注释,标记和检索系统的基本假设,多媒体丰富的微博中的图片和单词之间的联系松散,无法在图片和单词之间建立对应关系。为了解决上述挑战,我们提出了第一个分析和建模微博流中多模式内容之间的关联的研究,旨在通过建立微博中图片和单词之间的对应关系从微博中发现多模式主题。我们首先使用一种数据驱动的方法来分析单词,图片及其在微博中的关联类型的新特征。然后,我们提出了一种新的生成模型,称为双边对应潜在潜在Dirichlet分配(BC-LDA)模型。我们的BC-LDA模型可以在图片和单词之间分配灵活的关联,不仅可以允许图片单词与双边方向同时出现,而且还可以单模式关联。这种灵活的关联可以最适合数据分布,因此模型可以发现各种类型的联合主题,并相应地生成带有主题的图片和单词。我们在大规模的,真实的,多媒体丰富的微博数据集上对该模型进行了广泛的评估。我们在几种应用场景中展示了该模型的优势,包括图像标记,文本插图和主题发现。实验结果表明,我们提出的模型可以显着且始终优于传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号