首页> 外文期刊>ACM transactions on multimedia computing communications and applications >A Distributed Streaming Framework for Connection Discovery Using Shared Videos
【24h】

A Distributed Streaming Framework for Connection Discovery Using Shared Videos

机译:使用共享视频进行连接发现的分布式流框架

获取原文
获取原文并翻译 | 示例

摘要

With the advances in mobile devices and the popularity of social networks, users can share multimedia content anytime, anywhere. One of the most important types of emerging content is video, which is commonly shared on platforms such as Instagram and Facebook. User connections, which indicate whether two users are follower/followee or have the same interests, are essential to improve services and information relevant to users for many social media applications. But they are normally hidden due to users' privacy concerns or are kept confidential by social media sites. Using user-shared content is an alternative way to discover user connections. This article proposes to use user-shared videos for connection discovery with the Bag of Feature Tagging method and proposes a distributed streaming computation framework to facilitate the analytics. Exploiting the uniqueness of shared videos, the proposed framework is divided into Streaming processing and Online and Offline Computation. With experiments using a dataset from Twitter, it has been proved that the proposed method using user-shared videos for connection discovery is feasible. And the proposed computation framework significantly accelerates the analytics, reducing the processing time to only 32% for follower/followee recommendation. It has also been proved that comparable performance can be achieved with only partial data for each video and leads to more efficient computation.
机译:随着移动设备的发展和社交网络的普及,用户可以随时随地共享多媒体内容。视频是最重要的新兴内容类型之一,通常在Instagram和Facebook等平台上共享。指示两个用户是关注者/跟随者还是具有相同兴趣的用户连接对于改善许多社交媒体应用程序中与用户相关的服务和信息至关重要。但是由于用户的隐私问题,它们通常被隐藏起来,或者被社交媒体网站保密。使用用户共享的内容是发现用户连接的另一种方法。本文提出使用用户共享的视频通过“特征标记袋”方法进行连接发现,并提出一种分布式流计算框架来促进分析。利用共享视频的独特性,提出的框架分为流处理和在线与离线计算。通过使用来自Twitter的数据集进行的实验,已证明使用用户共享视频进行连接发现的建议方法是可行的。提出的计算框架极大地加快了分析速度,对于追随者/跟随者推荐,处理时间仅减少了32%。还已经证明,对于每个视频仅用部分数据就可以实现可比的性能,并可以提高计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号