首页> 外文期刊>ACM transactions on multimedia computing communications and applications >An Efficient Computation Framework for Connection Discovery using Shared Images
【24h】

An Efficient Computation Framework for Connection Discovery using Shared Images

机译:使用共享映像进行连接发现的高效计算框架

获取原文
获取原文并翻译 | 示例

摘要

With the advent and popularity of the social network, social graphs become essential to improve services and information relevance to users for many social media applications to predict follower/followee relationship, community membership, and so on. However, the social graphs could be hidden by users due to privacy concerns or kept by social media. Recently, connections discovered from user-shared images using machine-generated labels are proved to be more accessible alternatives to social graphs. But real-time discovery is difficult due to high complexity, and many applications are not possible. This article proposes an efficient computation framework for connection discovery using user-shared images, which is suitable for any image processing and computer vision techniques for connection discovery on the fly. The framework includes the architecture of online computation to facilitate real-time processing, offline computation for a complete processing, and online/offline communication. The proposed framework is implemented to demonstrate its effectiveness by speeding up connection discovery through user-shared images. By studying 300K+ user-shared images from two popular social networks, it is proven that the proposed computation framework reduces 90% of runtime with a comparable accurate with existing frameworks.
机译:随着社交网络的出现和普及,社交图对于提高许多社交媒体应用程序对用户的服务和信息的相关性以预测跟随者/被追踪者的关系,社区成员身份等变得至关重要。但是,社交图可能由于隐私问题而被用户隐藏或由社交媒体保存。最近,事实证明,使用机器生成的标签从用户共享的图像中发现的连接是社交图的更易于访问的替代方法。但是由于复杂度高,实时发现很困难,并且不可能进行许多应用。本文提出了一种用于使用用户共享图像进行连接发现的高效计算框架,该框架适用于即时进行连接发现的任何图像处理和计算机视觉技术。该框架包括用于促进实时处理的在线计算体系结构,用于完整处理的离线计算以及在线/离线通信的体系结构。该框架旨在通过通过用户共享图像加速连接发现来证明其有效性。通过研究来自两个流行社交网络的300K +用户共享图像,证明了所提出的计算框架可减少90%的运行时间,并且精度与现有框架相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号