首页> 外文期刊>ACM transactions on multimedia computing communications and applications >From Annotation to Computer-Aided Diagnosis: Detailed Evaluation of a Medical Multimedia System
【24h】

From Annotation to Computer-Aided Diagnosis: Detailed Evaluation of a Medical Multimedia System

机译:从注释到计算机辅助诊断:医学多媒体系统的详细评估

获取原文
获取原文并翻译 | 示例

摘要

Holisticmedical multimedia systems covering end-to-end functionality from data collection to aided diagnosis are highly needed, but rare. In many hospitals, the potential value of multimedia data collected through routine examinations is not recognized. Moreover, the availability of the data is limited, as the health care personnel may not have direct access to stored data. However, medical specialists interact with multimedia content daily through their everyday work and have an increasing interest in finding ways to use it to facilitate their work processes. In this article, we present a novel, holistic multimedia system aiming to tackle automatic analysis of video from gastrointestinal (GI) endoscopy. The proposed system comprises the whole pipeline, including data collection, processing, analysis, and visualization. It combines filters using machine learning, image recognition, and extraction of global and local image features. The novelty is primarily in this holistic approach and its real-time performance, where we automate a complete algorithmic GI screening process. We built the system in a modular way to make it easily extendable to analyze various abnormalities, and we made it efficient in order to run in real time. The conducted experimental evaluation proves that the detection and localization accuracy are comparable or even better than existing systems, but it is by far leading in terms of real-time performance and efficient resource consumption.
机译:迫切需要涵盖从数据收集到辅助诊断的端到端功能的整体医学多媒体系统,但这种情况很少见。在许多医院中,无法识别通过常规检查收集的多媒体数据的潜在价值。此外,由于医疗保健人员可能无法直接访问存储的数据,因此数据的可用性受到限制。但是,医学专家每天通过日常工作与多媒体内容进行交互,并且对寻找使用多媒体内容促进其工作过程的方式越来越感兴趣。在本文中,我们提出了一种新颖的整体多媒体系统,旨在解决胃肠道(GI)内窥镜检查视频的自动分析问题。拟议的系统包括整个管道,包括数据收集,处理,分析和可视化。它结合了使用机器学习,图像识别以及全局和局部图像特征提取的过滤器。新奇之处主要在于这种整体方法及其实时性能,在此方法中,我们可以自动执行完整的算法GI筛选过程。我们以模块化的方式构建该系统,以使其易于扩展以分析各种异常,并且使其高效运行以实时运行。进行的实验评估证明,检测和定位精度与现有系统相当甚至更好,但是在实时性能和有效资源消耗方面一直处于领先地位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号