首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Emotion Recognition Using Multiple Kernel Learning toward E-learning Applications
【24h】

Emotion Recognition Using Multiple Kernel Learning toward E-learning Applications

机译:使用多核学习进行电子学习应用的情感识别

获取原文
获取原文并翻译 | 示例

摘要

Adaptive Educational Hypermedia (AEH) e-learning models aim to personalize educational content and learning resources based on the needs of an individual learner. The Adaptive Hypermedia Architecture (AHA) is a specific implementation of the AEH model that exploits the cognitive characteristics of learner feedback to adapt resources accordingly. However, beside cognitive feedback, the learning realm generally includes both the affective and emotional feedback of the learner, which is often neglected in the design of e-learning models. This article aims to explore the potential of utilizing affect or emotion recognition research in AEH models. The framework is referred to as Multiple Kernel Learning Decision Tree Weighted Kernel Alignment (MKLDT-WFA). The MKLDT-WFA has two merits over classical MKL. First, the WFA component only preserves the relevant kernel weights to reduce redundancy and improve the discrimination for emotion classes. Second, training via the decision tree reduces the misclassification issues associated with the SimpleMKL. The proposed work has been evaluated on different emotion datasets and the results confirm the good performances. Finally, the conceptual Emotion-based E-learning Model (EEM) with the proposed emotion recognition framework is proposed for future work.
机译:自适应教育超媒体(AEH)电子学习模型旨在根据单个学习者的需求来个性化教育内容和学习资源。自适应超媒体体系结构(AHA)是AEH模型的特定实现,它利用学习者反馈的认知特征来相应地调整资源。但是,除了认知反馈之外,学习领域通常还包括学习者的情感和情感反馈,这在电子学习模型的设计中经常被忽略。本文旨在探讨在AEH模型中利用情感或情感识别研究的潜力。该框架称为“多核学习决策树加权核对齐”(MKLDT-WFA)。 MKLDT-WFA与经典MKL相比有两个优点。首先,WFA组件仅保留相关的内核权重,以减少冗余并改善对情感类别的区分。其次,通过决策树进行的训练减少了与SimpleMKL相关的错误分类问题。拟议的工作已在不同的情感数据集上进行了评估,结果证实了良好的表现。最后,提出了概念性的基于情感的电子学习模型(EEM),并提出了情感识别框架,以用于未来的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号