首页> 外文期刊>ACM Transactions on Modeling and Computer Simulation >Multidimensional Stochastic Approximation: Adaptive Algorithms and Applications
【24h】

Multidimensional Stochastic Approximation: Adaptive Algorithms and Applications

机译:多维随机逼近:自适应算法和应用

获取原文
获取原文并翻译 | 示例

摘要

We consider prototypical sequential stochastic optimization methods of Robbins-Monro (RM), Kiefer-Wolfowitz (KW), and Simultaneous Perturbations Stochastic Approximation (SPSA) varieties and propose adaptive modifications for multidimensional applications. These adaptive versions dynamically scale and shift the tuning sequences to better match the characteristics of the unknown underlying function, as well as the noise level. We test our algorithms on a variety of representative applications in inventory management, health care, revenue management, supply chain management, financial engineering, and queueing theory.
机译:我们考虑了Robbins-Monro(RM),Kiefer-Wolfowitz(KW)和同时扰动随机逼近(SPSA)变体的原型顺序随机优化方法,并为多维应用提出了自适应修改。这些自适应版本可动态调整和移动调整序列,以更好地匹配未知基础功能的特性以及噪声水平。我们在库存管理,医疗保健,收入管理,供应链管理,金融工程和排队论等各种代表性应用中测试我们的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号