首页> 外文期刊>ACM Transactions on Modeling and Computer Simulation >A Bayesian Approach to Parameter Inference in Queueing Networks
【24h】

A Bayesian Approach to Parameter Inference in Queueing Networks

机译:排队网络中参数推断的贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

The application of queueing network models to real-world applications often involves the task of estimating the service demand placed by requests at queueing nodes. In this article, we propose a methodology to estimate service demands in closed multiclass queueing networks based on Gibbs sampling. Our methodology requires measurements of the number of jobs at resources and can accept prior probabilities on the demands. Gibbs sampling is challenging to apply to estimation problems for queueing networks since it requires one to efficiently evaluate a likelihood function on the measured data. This likelihood function depends on the equilibrium solution of the network, which is difficult to compute in closed models due to the presence of the normalizing constant of the equilibrium state probabilities. To tackle this obstacle, we define a novel iterative approximation of the normalizing constant and show the improved accuracy of this approach, compared to existing methods, for use in conjunction with Gibbs sampling. We also demonstrate that, as a demand estimation tool, Gibbs sampling outperforms other popular Markov Chain Monte Carlo approximations. Experimental validation based on traces from a cloud application demonstrates the effectiveness of Gibbs sampling for service demand estimation in real-world studies.
机译:排队网络模型在实际应用程序中的应用通常涉及估算由请求在排队节点处放置的服务需求的任务。在本文中,我们提出了一种基于Gibbs采样估计封闭多类排队网络中服务需求的方法。我们的方法要求测量资源上的工作数量,并且可以接受需求的先验概率。吉布斯采样法难以应用于排队网络的估计问题,因为它需要人们有效地评估所测数据的似然函数。该似然函数取决于网络的平衡解,由于存在平衡态概率的归一化常数,因此很难在封闭模型中进行计算。为了解决这一障碍,我们定义了归一化常数的新颖迭代逼近,并显示了与现有方法相比,该方法与Gibbs采样结合使用时提高的准确性。我们还证明,作为需求估计工具,吉布斯采样的性能优于其他流行的马尔可夫链蒙特卡洛近似。基于来自云应用程序的跟踪进行的实验验证证明了Gibbs采样在实际研究中对服务需求估计的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号