首页> 外文期刊>Statistics and computing >Auxiliary variables for Bayesian inference in multi-class queueing networks
【24h】

Auxiliary variables for Bayesian inference in multi-class queueing networks

机译:多类排队网络中贝叶斯推理的辅助变量

获取原文
获取原文并翻译 | 示例

摘要

Queueing networks describe complex stochastic systems of both theoretical and practical interest. They provide the means to assess alterations, diagnose poor performance and evaluate robustness across sets of interconnected resources. In the present paper, we focus on the underlying continuous-time Markov chains induced by these networks, and we present a flexible method for drawing parameter inference in multi-class Markovian cases with switching and different service disciplines. The approach is directed towards the inferential problem with missing data, where transition paths of individual tasks among the queues are often unknown. The paper introduces a slice sampling technique with mappings to the measurable space of task transitions between the service stations. This can address time and tractability issues in computational procedures, handle prior system knowledge and overcome common restrictions on service rates across existing inferential frameworks. Finally, the proposed algorithm is validated on synthetic data and applied to a real data set, obtained from a service delivery tasking tool implemented in two university hospitals.
机译:排队网络描述了具有理论和实践意义的复杂随机系统。它们提供了评估变更,诊断性能不佳以及评估互连资源集之间健壮性的方法。在本文中,我们着重研究了由这些网络引起的底层连续时间马尔可夫链,并提出了一种灵活的方法,用于在具有切换和不同服务准则的多类马尔可夫情况下进行参数推断。该方法针对缺少数据的推论问题,其中队列中单个任务的转换路径通常是未知的。本文介绍了一种切片采样技术,该技术具有到服务站之间任务转换的可测量空间的映射。这可以解决计算过程中的时间和易处理性问题,处理现有的系统知识,并克服现有推论框架对服务费率的常见限制。最后,该算法在合成数据上得到验证,并应用于从两个大学医院实施的服务提供任务工具获得的真实数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号