首页> 外文期刊>ACM Transactions on Modeling and Computer Simulation >NeMo: A Massively Parallel Discrete-Event Simulation Model for Neuromorphic Architectures
【24h】

NeMo: A Massively Parallel Discrete-Event Simulation Model for Neuromorphic Architectures

机译:NeMo:用于神经形态架构的大规模并行离散事件仿真模型

获取原文
获取原文并翻译 | 示例

摘要

Neuromorphic computing is a broad category of non-von Neumann architectures that mimic biological nervous systems using hardware. Current research shows that this class of computing can execute data classification algorithms using only a tiny fraction of the power conventional CPUs require. This raises the larger research question: How might neuromorphic computing be used to improve application performance, power consumption, and overall system reliability of future supercomputers? To address this question, an open-source neuromorphic processor architecture simulator called NeMo is being developed. This effort will enable the design space exploration of potential heterogeneous compute systems that combine traditional CPUs, GPUs, and neuromorphic hardware. This article examines the design, implementation, and performance of NeMo. Demonstration of NeMo's efficient execution using 2,048 nodes of an IBM Blue Gene/Q system, modeling 8,388,608 neuromorphic processing cores is reported. The peak performance of NeMo is just over ten billion events-per-second when operating at this scale.
机译:神经形态计算是使用硬件模拟生物神经系统的非冯·诺依曼架构的广泛类别。当前的研究表明,此类计算仅使用传统CPU所需功能的一小部分即可执行数据分类算法。这就提出了一个更大的研究问题:神经形态计算将如何用于改善未来超级计算机的应用程序性能,功耗和整体系统可靠性?为了解决这个问题,正在开发一种名为NeMo的开源神经形态处理器体系结构模拟器。这项工作将使结合传统CPU,GPU和神经形态硬件的潜在异构计算系统的设计空间探索成为可能。本文研究了NeMo的设计,实现和性能。报告了NeMo使用IBM Blue Gene / Q系统的2,048个节点,对8,388,608个神经形态处理核心建模的高效执行方式。当以这种规模运行时,NeMo的最高性能每秒超过一百亿个事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号