首页> 外文期刊>ACM transactions on mathematical software >Algorithm 1011: Improved Invariant Polytope Algorithm and Applications
【24h】

Algorithm 1011: Improved Invariant Polytope Algorithm and Applications

机译:算法1011:改进的不变多特渗透算法和应用

获取原文
获取原文并翻译 | 示例

摘要

In several papers of 2013-2016, Guglielmi and Protasov made a breakthrough in the problem of the joint spectral radius computation, developing the invariant polytope algorithm that for most matrix families finds the exact value of the joint spectral radius. This algorithm found many applications in problems of functional analysis, approximation theory, combinatorics, and so on. In this article, we propose a modification of the invariant polytope algorithm making it roughly 3 times faster (single threaded), suitable for higher dimensions, and parallelise it. The modified version works for most matrix families of dimensions up to 25, for non-negative matrices up to 3,000. In addition, we introduce a new, fast algorithm, called modified Gripen-berg algorithm, for computing good lower bounds for the joint spectral radius. The corresponding examples and statistics of numerical results are provided. Several applications of our algorithms are presented. In particular, we find the exact values of the regularity exponents of Daubechies wavelets up to order 42 and the capacities of codes that avoid certain difference patterns.
机译:在2013 - 2016年的几篇论文中,Guglielmi和Protasov在联合光谱半径计算问题中取得了突破,开发了大多数矩阵系列的不变多晶硅算法找到了联合光谱半径的确切值。该算法在功能分析,近似理论,组合学等问题中发现了许多应用程序。在本文中,我们提出了一种修改了不变的多晶硅算法,使其更快地增加3倍(单螺纹),适用于更高的尺寸,并平行于其。修改后的版本适用于大多数矩阵系列,最高可达25个,用于非负矩阵高达3,000。此外,我们介绍了一种新的快速算法,称为修改的Gripen-Berg算法,用于计算关节光谱半径的良好下限。提供了数值结果的相应示例和统计。提出了我们算法的几种应用。特别是,我们发现Daubechies小波的规律性指数的确切值,到达订单42和避免某些差异模式的代码的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号