首页> 外文期刊>ACM transactions on mathematical software >Algorithm 994: Fast Implementations of the Brouwer-Zimmermann Algorithm for the Computation of the Minimum Distance of a Random Linear Code
【24h】

Algorithm 994: Fast Implementations of the Brouwer-Zimmermann Algorithm for the Computation of the Minimum Distance of a Random Linear Code

机译:算法994:Brouwer-zimmermann算法的快速实现,用于计算随机线性码的最小距离

获取原文
获取原文并翻译 | 示例

摘要

The minimum distance of an error-correcting code is an important concept in information theory. Hence, computing the minimum distance of a code with a minimum computational cost is crucial to many problems in this area. In this article, we present and assess a family of implementations of both the brute-force algorithm and the Brouwer-Zimmermann algorithm for computing the minimum distance of a random linear code over F-2 that are faster than current implementations, both in the commercial and public domain. In addition to the basic sequential implementations, we present parallel and vectorized implementations that produce high performances on modern architectures. The attained performance results show the benefits of the developed optimized algorithms, which obtain remarkable improvements compared with state-of-the-art implementations widely used nowadays.
机译:错误校正代码的最小距离是信息理论中的重要概念。因此,计算具有最小计算成本的代码的最小距离对该区域中的许多问题至关重要。在本文中,我们在展示并评估Brute-Force算法和Brouwer-Zimmann算法的一系列实施方案,用于计算比在商业中的电流实现更快的F-2上的随机线性码的最小距离和公共领域。除了基本的顺序实现之外,我们还存在于现代架构上产生高性能的平行和矢量化实现。达到的性能结果表明,与现在广泛使用的最先进的实现相比,产生了优化的优化算法的益处,其获得了显着的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号