首页> 外文期刊>ACM transactions on mathematical software >Algorithm 994: Fast Implementations of the Brouwer-Zimmermann Algorithm for the Computation of the Minimum Distance of a Random Linear Code
【24h】

Algorithm 994: Fast Implementations of the Brouwer-Zimmermann Algorithm for the Computation of the Minimum Distance of a Random Linear Code

机译:算法994:用于计算随机线性码最小距离的Brouwer-Zimmermann算法的快速实现

获取原文
获取原文并翻译 | 示例

摘要

The minimum distance of an error-correcting code is an important concept in information theory. Hence, computing the minimum distance of a code with a minimum computational cost is crucial to many problems in this area. In this article, we present and assess a family of implementations of both the brute-force algorithm and the Brouwer-Zimmermann algorithm for computing the minimum distance of a random linear code over F-2 that are faster than current implementations, both in the commercial and public domain. In addition to the basic sequential implementations, we present parallel and vectorized implementations that produce high performances on modern architectures. The attained performance results show the benefits of the developed optimized algorithms, which obtain remarkable improvements compared with state-of-the-art implementations widely used nowadays.
机译:纠错码的最小距离是信息论中的重要概念。因此,以最小的计算成本来计算代码的最小距离对于该领域中的许多问题至关重要。在本文中,我们介绍并评估了蛮力算法和Brouwer-Zimmermann算法的实现方案系列,它们用于计算F-2上的随机线性代码的最小距离,它们比当前实现方案要快,在商业上和公共领域。除了基本的顺序实现之外,我们还提出了并行和向量化的实现,这些实现在现代体系结构上产生了高性能。获得的性能结果显示了开发的优化算法的好处,与当今广泛使用的最新实现相比,这些算法获得了显着的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号