首页> 外文期刊>ACM transactions on mathematical software >Performance Evaluation of a Two-Dimensional Lattice Boltzmann Solver Using CUDA and PGAS UPC Based Parallelisation
【24h】

Performance Evaluation of a Two-Dimensional Lattice Boltzmann Solver Using CUDA and PGAS UPC Based Parallelisation

机译:基于CUDA和PGAS UPC的并行化对二维格子Boltzmann解算器的性能评估

获取原文
获取原文并翻译 | 示例

摘要

The Unified Parallel C (UPC) language from the Partitioned Global Address Space (PGAS) family unifies the advantages of shared and local memory spaces and offers a relatively straightforward code parallelisation with the Central Processing Unit (CPU). In contrast, the Computer Unified Device Architecture (CUDA) development kit gives a tool to make use of the Graphics Processing Unit (GPU). We provide a detailed comparison between these novel techniques through the parallelisation of a two-dimensional lattice Boltzmann method based fluid flow solver. Our comparison between the CUDA and UPC parallelisation takes into account the required conceptual effort, the performance gain, and the limitations of the approaches from the application oriented developers' point of view. We demonstrated that UPC led to competitive efficiency with the local memory implementation. However, the performance of the shared memory code fell behind our expectations, and we concluded that the investigated UPC compilers could not efficiently treat the shared memory space. The CUDA implementation proved to be more complex compared to the UPC approach mainly because of the complicated memory structure of the graphics card which also makes GPUs suitable for the parallelisation of the lattice Boltzmann method.
机译:分区全局地址空间(PGAS)系列中的统一并行C(UPC)语言统一了共享和本地存储空间的优点,并提供了与中央处理器(CPU)相对简单的代码并行化。相比之下,计算机统一设备体系结构(CUDA)开发套件提供了使用图形处理单元(GPU)的工具。我们通过基于二维格子Boltzmann方法的流体流动求解器的并行化,提供了这些新颖技术之间的详细比较。从面向应用程序的开发人员的角度来看,我们在CUDA和UPC并行化之间的比较考虑了所需的概念性工作,性能提升以及方法的局限性。我们证明了UPC通过本地内存实现提高了竞争效率。但是,共享内存代码的性能未达到我们的预期,因此我们得出结论,所研究的UPC编译器无法有效处理共享内存空间。事实证明,与UPC方法相比,CUDA的实现更为复杂,这主要是因为图形卡的内存结构复杂,这也使GPU适合于格子Boltzmann方法的并行化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号