首页> 外文期刊>ACM Transactions on Management Information Systems >Graph Convolutional Network-based Model for Incident-related Congestion Prediction: A Case Study of Shanghai Expressways
【24h】

Graph Convolutional Network-based Model for Incident-related Congestion Prediction: A Case Study of Shanghai Expressways

机译:基于图表的事件相关拥塞预测模型:以上海高速公路为例

获取原文
获取原文并翻译 | 示例

摘要

Traffic congestion has become a significant obstacle to the development of mega cities in China. Although local governments have used many resources in constructing road infrastructure, it is still insufficient for the increasing traffic demands. As a first step toward optimizing real-time traffic control, this study uses Shanghai Expressways as a case study to predict incident-related congestions. Our study proposes a graph convolutional network-based model to identify correlations in multi-dimensional sensor-detected data, while simultaneously taking into account environmental, spatiotemporal, and network features in predicting traffic conditions immediately after a traffic incident. The average accuracy, average AUC, and average F-l score of the predictive model are 92.78%, 95.98%, and 88.78%, respectively, on small-scale ground-truth data. Furthermore, we improve the predictive model's performance using semi-supervised learning by including more unlabeled data instances. As a result, the accuracy, AUC, and F-l score of the model increase by 2.69%, 1.25%, and 4.72%, respectively. The findings of this article have important implications that can be used to improve the management and development of Expressways in Shanghai, as well as other metropolitan areas in China.
机译:交通拥堵已成为中国大城市发展的重要障碍。虽然地方政府在建造道路基础设施方面使用了许多资源,但仍然不足以增加交通需求。作为优化实时交通管制的第一步,本研究使用上海高速公路作为案例研究,以预测与事件相关的拥堵。我们的研究提出了一种基于图形卷积网络的模型,以识别多维传感器检测数据中的相关性,同时考虑到在交通事故之后立即预测交通状况的环境,时空和网络特征。预测模型的平均准确性,平均AUC和平均F-L分数分别为92.78%,95.98%和88.78%,分别在小规模的地面真实数据上。此外,我们通过包括更多未标记的数据实例,通过半监督学习提高预测模型的性能。结果,模型的准确性,AUC和F-L分别的评分分别增加了2.69%,1.25%和4.72%。本文的调查结果具有重要的影响,可用于改善上海市高速公路的管理和发展,以及中国其他大都市地区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号