首页> 外文期刊>ACM transactions on knowledge discovery from data >A Stochastic Algorithm Based on Reverse Sampling Technique to Fight Against the Cyberbullying
【24h】

A Stochastic Algorithm Based on Reverse Sampling Technique to Fight Against the Cyberbullying

机译:一种基于反向采样技术的随机算法,用于对抗网络欺凌

获取原文
获取原文并翻译 | 示例

摘要

Cyberbullying has caused serious consequences especially for social network users in recent years. However, the challenge is how to fight against the cyberbullying effectively from the algorithmic perspective. In this article, we study the fighting against the cyberbullying problem, i.e., identify an initialwitness setwith a budget to spread the positive influence to protect the users in a specific target set such that the number of cybervictim users in the target set being activated by the seed set of cyberbullying is minimized. We first formulate this problem and show its NP-hardness. We further prove that the objective function is submodular with respect to the size of witnesses set when we convert the original problem into the maximal version. Then we propose a stochastic approach to solve this maximal version problem based on the Reverse Sampling Technique with a constant factor guarantee. In addition, we provide theoretical analysis and discuss the relationship between the optimal value and the value returned by the proposed algorithm. To evaluate the proposed approach, we implement extensive experiments on synthetic and real datasets. The experimental results showour approach is superior to the comparison methods.
机译:近年来,Cyber​​ Bullying造成严重后果特别适用于社交网络用户。然而,挑战是如何从算法视角有效地与讯息措施进行争夺。在本文中,我们研究了对克林布林问题的斗争,即确定预算的初始化,以扩散积极影响,以保护用户在特定目标集中保护用户,使得目标集中的Cyber​​Victim用户的数量被激活种子套是网络欺凌。我们首先制定这个问题并显示其NP硬度。我们进一步证明,当我们将原始问题转换为最大版本时,目标函数是针对目击者的大小而定的。然后,我们提出了一种基于具有恒定因子保证的反向采样技术来解决这种最大版本问题的随机方法。此外,我们提供了理论分析,并讨论了所提出的算法返回的最佳值与值之间的关系。为了评估所提出的方法,我们对合成和实际数据集进行了广泛的实验。实验结果智能方法优于比较方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号