首页> 外文期刊>ACM transactions on knowledge discovery from data >SAKE: Estimating Katz Centrality Based on Sampling for Large-Scale Social Networks
【24h】

SAKE: Estimating Katz Centrality Based on Sampling for Large-Scale Social Networks

机译:缘故:估算基于大规模社交网络的抽样的Katz Centrality

获取原文
获取原文并翻译 | 示例

摘要

Katz centrality is a fundamental concept to measure the influence of a vertex in a social network. However, existing approaches to calculating Katz centrality in a large-scale network are unpractical and computationally expensive. In this article, we propose a novel method to estimate Katz centrality based on graph sampling techniques, which object to achieve comparable estimation accuracy of the state-of-the-arts with much lower computational complexity. Specifically, we develop a Horvitz-Thompson estimate for Katz centrality by using a multi-round sampling approach and deriving an unbiased mean value estimator. We further propose SAKE, a Sampling-based Algorithm for fast Katz centrality Estimation. We prove that the estimator calculated by SAKE is probabilistically guaranteed to be within an additive error from the exact value. Extensive evaluation experiments based on four real-world networks show that the proposed algorithm can estimate Katz centralities for partial vertices with low sampling rate, low computation time, and it works well in identifying high influence vertices in social networks.
机译:KATZ Centrality是一种基本概念,以衡量一个在社交网络中的顶点的影响。然而,在大规模网络中计算KATZ中心的现有方法是不可思议的和计算昂贵的。在本文中,我们提出了一种基于曲线图采样技术来估计KATZ中心性的新方法,其目的是实现最先进的估计精度,以更低的计算复杂性。具体而言,我们通过使用多舍代采样方法来开发Katz Centrality的Horvitz-Thompson估计,并导出非偏见的平均值估计器。我们进一步提出了一种基于采样的快速KATZ中心估计的算法。我们证明,通过缘故计算的估计器是概率的,可以保证从确切值的附加误差内。基于四个真实网络的广泛评估实验表明,该算法可以估算具有低采样率,低计算时间,低计算时间的部分顶点的KATZ集电,并且在识别社交网络中的高影响点。

著录项

  • 来源
    《ACM transactions on knowledge discovery from data》 |2021年第4期|66.1-66.21|共21页
  • 作者单位

    Nanjing Univ State Key Lab Novel Software Technol Xianlin Rd 163 Nanjing 210023 Jiangsu Peoples R China;

    Nanjing Univ State Key Lab Novel Software Technol Xianlin Rd 163 Nanjing 210023 Jiangsu Peoples R China|Nanjing Univ Sino German Inst Social Comp Xianlin Rd 163 Nanjing 210023 Jiangsu Peoples R China;

    Univ Leeds Leeds LS2 9JT W Yorkshire England;

    Nanjing Univ State Key Lab Novel Software Technol Xianlin Rd 163 Nanjing 210023 Jiangsu Peoples R China;

    Nanjing Univ State Key Lab Novel Software Technol Xianlin Rd 163 Nanjing 210023 Jiangsu Peoples R China;

    Nanjing Univ State Key Lab Novel Software Technol Xianlin Rd 163 Nanjing 210023 Jiangsu Peoples R China|Nanjing Univ Sino German Inst Social Comp Xianlin Rd 163 Nanjing 210023 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social network; Katz centrality; graph sampling;

    机译:社交网络;Katz Centrality;图形抽样;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号