首页> 外文期刊>ACM transactions on knowledge discovery from data >GGATB-LSTM: Grouping and Global Attention-based Time-aware Bidirectional LSTM Medical Treatment Behavior Prediction
【24h】

GGATB-LSTM: Grouping and Global Attention-based Time-aware Bidirectional LSTM Medical Treatment Behavior Prediction

机译:GGATB-LSTM:基于GGATB-LSTM:基于全球关注的时间感知双向LSTM医疗行为预测

获取原文
获取原文并翻译 | 示例

摘要

In China, with the continuous development of national health insurance policies, more and more people have joined the health insurance. How to accurately predict patients future medical treatment behavior becomes a hotspot issue. The biggest challenge in this issue is how to improve the prediction performance by modeling health insurance data with high-dimensional time characteristics. At present, most of the research is to solve this issue by using Recurrent Neural Networks (RNNs) to construct an overall prediction model for the medical visit sequences. However, RNNs can not effectively solve the long-term dependence, and RNNs ignores the importance of time interval of the medical visit sequence. Additionally, the global model may lose some important content to different groups. In order to solve these problems, we propose a Grouping and Global Attention based Time-aware Bidirectional Long Short-Term Memory (GGATB-LSTM) model to achieve medical treatment behavior prediction. The model first constructs a heterogeneous information network based on health insurance data, and uses a tensor CANDECOMP/PARAFAC decomposition method to achieve similarity grouping. In terms of group prediction, a global attention and time factor are introduced to extend the bidirectional LSTM. Finally, the proposed model is evaluated by using real dataset, and conclude that GGATB-LSTM is better than other methods.
机译:在中国,随着国家医疗保险政策的不断发展,越来越多的人加入了健康保险。如何准确预测患者未来的医疗行为成为热点问题。本问题中最大的挑战是如何通过利用高维时间特征建模健康保险数据来提高预测性能。目前,大多数研究是通过使用经常性神经网络(RNN)来构建医疗访问序列的整体预测模型来解决这个问题。然而,RNN不能有效解决长期依赖性,并且RNNS忽略了医疗访问序列的时间间隔的重要性。此外,全局模型可能会失去不同组的重要内容。为了解决这些问题,我们提出了基于时间感知双向长期内记忆(GGATB-LSTM)模型的分组和全球注意,以实现医疗行为预测。该模型首先基于健康保险数据构建异构信息网络,并使用张量CANDOMP / PARAFAC分解方法来实现相似度分组。就组预测而言,引入了全局关注和时间因素来扩展双向LSTM。最后,通过使用真实数据集来评估所提出的模型,并得出结论,GGATB-LSTM比其他方法更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号