首页> 外文期刊>ACM transactions on knowledge discovery from data >Efficient Approaches to k Representative G-Skyline Queries
【24h】

Efficient Approaches to k Representative G-Skyline Queries

机译:高效的K代表性G-SKYLINE查询方法

获取原文
获取原文并翻译 | 示例

摘要

The G-Skyline (GSky) query is a powerful tool to analyze optimal groups in decision support. Compared with other group skyline queries, it releases users from providing an aggregate function. Besides, it can get much comprehensive results without overlooking some important results containing non-skylines. However, it is hard for the users to make sensible choices when facing so many results the GSky query returns, especially over a large, high-dimensional dataset or with a large group size. In this article, we investigate k representative G-Skyline (kGSky) queries to obtain a manageable size of optimal groups. The kGSky query can also inherit the advantage of the GSky query; its results are representative and diversified. Next, we propose three exact algorithms with novel techniques including an upper bound pruning, a grouping strategy, a layered optimum strategy, and a hybrid strategy to efficiently process the kGSky query. Consider these exact algorithms have high time complexity and the precise results are not necessary in many applications. We further develop two approximate algorithms to trade off some accuracy for efficiency. Extensive experiments on both real and synthetic datasets demonstrate the efficiency, scalability, and accuracy of the proposed algorithms.
机译:G-Skyline(GSky)查询是一个强大的工具,用于分析决策支持中的最佳组。与其他组天际线查询相比,它将释放用户提供汇总功能。此外,它可以得到很多全面的结果,而不忽视包含非天际线的一些重要结果。但是,在面对这么多的结果时,用户很难做出明智的选择GSKY查询返回,尤其是在大型高维数据集或具有大的组大小。在本文中,我们调查K代表性G-Skyline(kgsky)查询,以获得最佳组的可管理大小。 kgsky查询也可以继承GSKY查询的优势;其结果是代表性和多样化的。接下来,我们提出了具有新颖技术的三种精确算法,包括上限修剪,分组策略,分层最佳策略和混合策略,以有效地处理KGSKY查询。考虑这些精确的算法具有高时间复杂度,并且在许多应用中不需要精确的结果。我们进一步开发了两个近似算法,以实现一些准确性以获得效率。关于实际和合成数据集的广泛实验证明了所提出的算法的效率,可扩展性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号