首页> 外文期刊>ACM transactions on knowledge discovery from data >Nearest Neighbor-Based Classification of Uncertain Data
【24h】

Nearest Neighbor-Based Classification of Uncertain Data

机译:基于最近邻的不确定数据分类

获取原文
获取原文并翻译 | 示例

摘要

This work deals with the problem of classifying uncertain data. With this aim we introduce the Uncertain Nearest Neighbor (UNN) rule, which represents the generalization of the deterministic nearest neighbor rule to the case in which uncertain objects are available. The UNN rule relies on the concept of nearest neighbor class, rather than on that of nearest neighbor object. The nearest neighbor class of a test object is the class that maximizes the probability of providing its nearest neighbor. The evidence is that the former concept is much more powerful than the latter in the presence of uncertainty, in that it correctly models the right semantics of the nearest neighbor decision rule when applied to the uncertain scenario. An effective and efficient algorithm to perform uncertain nearest neighbor classification of a generic (un)certain test object is designed, based on properties that greatly reduce the temporal cost associated with nearest neighbor class probability computation. Experimental results are presented, showing that the UNN rule is effective and efficient in classifying uncertain data.
机译:这项工作解决了对不确定数据进行分类的问题。为此,我们引入了不确定最近邻规则(UNN),该规则代表确定性最近邻规则对不确定对象可用的情况的推广。 UNN规则依赖于最邻近类的概念,而不是最邻近对象的概念。测试对象的最近邻居类是最大化提供其最近邻居的可能性的类。有证据表明,在存在不确定性的情况下,前一个概念比后者的功能要强大得多,因为当应用于不确定性场景时,它可以正确地建模最近邻居决策规则的正确语义。基于可大大降低与最近邻居类别概率计算相关的时间成本的属性,设计了一种有效且高效的算法,用于对通用(不确定)特定测试对象执行不确定的最近邻居分类。实验结果表明,UNN规则对于不确定数据分类是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号