首页> 外文期刊>Pattern recognition letters >A nearest neighbor-based active learning method and its application to time series classification
【24h】

A nearest neighbor-based active learning method and its application to time series classification

机译:基于最近的基于邻居的主动学习方法及其在时间序列分类的应用程序

获取原文
获取原文并翻译 | 示例

摘要

Although the one nearest neighbor approach is widely used in time series classification, its successful performance requires enough labeled data, which is often difficult to obtain due to a high labeling cost. This article considers a practical classification scenario in which labeled data are scant but unlabeled data are plenty, and a limited budget for the annotating task is provided. For an effective classification with limited resources, we propose a nearest neighbor-based sampling strategy for active learning. The proposed approach uses highly local information to measure the uncertainty and utility of an unlabeled instance and is applicable to extremely sparse labeled data. Furthermore, we extend the proposed approach to batch mode active learning to select a batch of informative samples at each sampling iteration. Experimental results on the WAFER and ECG50 0 0 data sets demonstrate the effectiveness of the proposed algorithm as compared with other nearest neighbor-based approaches.& nbsp; (c) 2021 Elsevier B.V. All rights reserved.
机译:虽然一个最近的邻近方法广泛用于时间序列分类,但其成功的性能需要足够的标记数据,这通常难以导致的标记成本。本文考虑了一个实用的分类方案,其中标记的数据是Scant但未标记的数据是充足的,并且提供了注释任务的有限预算。对于资源有限的有效分类,我们提出了一种最近的基于邻国的采样策略,用于积极学习。该方法使用高度本地信息来测量未标记实例的不确定性和实用性,适用于极其稀疏的标记数据。此外,我们将所提出的方法扩展到批量模式主动学习,以在每个采样迭代中选择一批信息样本。晶圆和ECG50 0 0 0数据集的实验结果证明了与基于最近邻的其他方法相比的提议算法的有效性。  (c)2021 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号