首页> 外文期刊>ACM transactions on knowledge discovery from data >Ranking Metric Anomaly in Invariant Networks
【24h】

Ranking Metric Anomaly in Invariant Networks

机译:不变网络中的度量度量异常排名

获取原文
获取原文并翻译 | 示例

摘要

The management of large-scale distributed information systems relies on the effective use and modeling of monitoring data collected at various points in the distributed information systems. A traditional approach to model monitoring data is to discover invariant relationships among the monitoring data. Indeed, we can discover all invariant relationships among all pairs of monitoring data and generate invariant networks, where a node is a monitoring data source (metric) and a link indicates an invariant relationship between two monitoring data. Such an invariant network representation can help system experts to localize and diagnose the system faults by examining those broken invariant relationships and their related metrics, since system faults usually propagate among the monitoring data and eventually lead to some broken invariant relationships. However, at one time, there are usually a lot of broken links (invariant relationships) within an invariant network. Without proper guidance, it is difficult for system experts to manually inspect this large number of broken links. To this end, in this article, we propose the problem of ranking metrics according to the anomaly levels for a given invariant network, while this is a nontrivial task due to the uncertainties and the complex nature of invariant networks. Specifically, we propose two types of algorithms for ranking metric anomaly by link analysis in invariant networks. Along this line, we first define two measurements to quantify the anomaly level of each metric, and introduce the mRank algorithm. Also, we provide a weighted score mechanism and develop the gRank algorithm, which involves an iterative process to obtain a score to measure the anomaly levels. In addition, some extended algorithms based on mRank and gRank algorithms are developed by taking into account the probability of being broken as well as noisy links. Finally, we validate all the proposed algorithms on a large number of real-world and synthetic data sets to illustrate the effectiveness and efficiency of different algorithms.
机译:大型分布式信息系统的管理依赖于在分布式信息系统各个点收集的监视数据的有效使用和建模。对监视数据进行建模的传统方法是发现监视数据之间的不变关系。实际上,我们可以发现所有监视数据对之间的所有不变关系,并生成不变网络,其中一个节点是一个监视数据源(度量标准),而一条链接表示两个监视数据之间的不变关系。由于系统故障通常会在监视数据之间传播并最终导致某些破坏的不变关系,因此这种不变的网络表示形式可以通过检查那些破坏的不变关系及其相关指标来帮助系统专家定位和诊断系统故障。但是,在同一时间,不变网络中通常有很多断开的链接(不变关系)。没有适当的指导,系统专家很难手动检查大量断开的链接。为此,在本文中,我们提出了根据给定不变网络的异常级别对度量进行排名的问题,而由于不变网络的不确定性和复杂性,这是一项不平凡的任务。具体来说,我们提出了两种通过不变网络中的链接分析对度量异常进行排名的算法。沿着这条线,我们首先定义两个度量以量化每个度量的异常水平,然后介绍mRank算法。此外,我们提供了加权得分机制并开发了gRank算法,该算法涉及一个迭代过程,以获得一个用于测量异常水平的得分。另外,通过考虑断断的可能性以及嘈杂的链接,开发了一些基于mRank和gRank算法的扩展算法。最后,我们在大量的真实世界和综合数据集上验证所有提出的算法,以说明不同算法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号