首页> 外文期刊>ACM transactions on knowledge discovery from data >Rumor Gauge: Predicting the Veracity of Rumors on Twitter
【24h】

Rumor Gauge: Predicting the Veracity of Rumors on Twitter

机译:谣言量表:在Twitter上预测谣言的准确性

获取原文
获取原文并翻译 | 示例

摘要

The spread of malicious or accidental misinformation in social media, especially in time-sensitive situations, such as real-world emergencies, can have harmful effects on individuals and society. In this work, we developed models for automated verification of rumors (unverified information) that propagate through Twitter. To predict the veracity of rumors, we identified salient features of rumors by examining three aspects of information spread: linguistic style used to express rumors, characteristics of people involved in propagating information, and network propagation dynamics. The predicted veracity of a time series of these features extracted from a rumor (a collection of tweets) is generated using Hidden Markov Models. The verification algorithm was trained and tested on 209 rumors representing 938,806 tweets collected from real-world events, including the 2013 Boston Marathon bombings, the 2014 Ferguson unrest, and the 2014 Ebola epidemic, and many other rumors about various real-world events reported on popular websites that document public rumors. The algorithm was able to correctly predict the veracity of 75% of the rumors faster than any other public source, including journalists and law enforcement officials. The ability to track rumors and predict their outcomes may have practical applications for news consumers, financial markets, journalists, and emergency services, and more generally to help minimize the impact of false information on Twitter.
机译:恶意或偶然的错误信息在社交媒体中的传播,特别是在时间紧迫的情况下,例如现实世界中的紧急情况,可能对个人和社会产生有害影响。在这项工作中,我们开发了用于自动验证通过Twitter传播的谣言(未经验证的信息)的模型。为了预测谣言的真实性,我们通过检查信息传播的三个方面确定了谣言的显着特征:用于表达谣言的语言风格,参与传播信息的人员的特征以及网络传播动态。使用Hidden Markov模型可生成从谣言(推文集合)中提取的这些特征的时间序列的预测准确性。对该验证算法进行了训练并进行了测试,测试了209项谣言,这些谣言代表了从真实世界事件中收集到的938,806条推文,包括2013年波士顿马拉松爆炸,2014年弗格森动荡和2014年埃博拉疫情,以及许多关于各种现实事件的谣言记录公开谣言的热门网站。该算法能够比其他任何公开来源(包括记者和执法人员)更快地正确预测75%的谣言的真实性。跟踪谣言并预测其结果的能力可能对新闻消费者,金融市场,新闻记者和紧急服务有实际的应用,并且更广泛地是有助于最大程度地减少虚假信息对Twitter的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号