首页> 外文期刊>ACM transactions on knowledge discovery from data >Krylov Subspace Approximation for Local Community Detection in Large Networks
【24h】

Krylov Subspace Approximation for Local Community Detection in Large Networks

机译:大型网络中用于局部社区检测的Krylov子空间逼近

获取原文
获取原文并翻译 | 示例

摘要

Community detection is an important information mining task to uncover modular structures in large networks. For increasingly common large network datasets, global community detection is prohibitively expensive, and attention has shifted to methods that mine local communities, i.e., identifying all latent members of a particular community from a few labeled seed members. To address such semi-supervised mining task, we systematically develop a local spectral (LOSP) subspace-based community detection method, called LOSP. We define a family of LOSP subspaces based on Krylov subspaces, and seek a sparse indicator for the target community via an l(1) norm minimization over the Krylov subspace. Variants of LOSP depend on type of random walks with different diffusion speeds, type of random walks, dimension of the LOSP subspace, and step of diffusions. The effectiveness of the proposed LOSP approach is theoretically analyzed based on Rayleigh quotients, and it is experimentally verified on a wide variety of real-world networks across social, production, and biological domains, as well as on an extensive set of synthetic LFR benchmark datasets.
机译:社区检测是发现大型网络中模块化结构的重要信息挖掘任务。对于越来越常见的大型网络数据集,全球社区检测的成本高得惊人,并且注意力已转移到挖掘本地社区的方法,即从一些标记的种子成员中识别特定社区的所有潜在成员。为了解决这种半监督采矿任务,我们系统地开发了一种基于局部光谱(LOSP)子空间的社区检测方法,称为LOSP。我们基于Krylov子空间定义了一系列LOSP子空间,并通过在Krylov子空间上的l(1)范数最小化为目标社区寻找稀疏指标。 LOSP的变体取决于具有不同扩散速度的随机游走的类型,随机游走的类型,LOSP子空间的大小以及扩散的阶跃。理论上基于Rayleigh商对提出的LOSP方法的有效性进行了分析,并在社会,生产和生物领域的各种现实网络以及广泛的合成LFR基准数据集上进行了实验验证。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号